Skip to main content
Log in

Ionization instability and turbulence in the plume of sub-ampere hollow cathodes depending on an applied magnetic field

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

When operated with a Hall effect thruster, either centrally or externally mounted, the hollow cathode discharge occurs in a magnetic field environment. Therefore, it is important to assess the influence of the magnetic field on the standalone operation of a hollow cathode to better predict device behavior when coupled with a Hall effect thruster. This study focuses on the influence of an applied axial magnetic field on the main oscillatory phenomena in the plume of a Kr-fed sub-ampere hollow cathode operated with an external disk anode. A probe array consisting of two cylindrical Langmuir probes and an emissive probe is used to assess changes in plasma parameters and collected ion saturation current as the magnetic field strength is varied up to 3 mT at the cathode’s location. The electron transport along the cathode–anode space is analyzed in terms of total electron collision frequency. It is shown that a higher magnetic field strength induces larger plasma densities and lower electron temperatures. Applying a magnetic field to the discharge of a cathode operating in plume mode causes a reduction in both the ionization instability and ion acoustic turbulence (IAT) energies. This suggests a dampening of the main oscillatory phenomena in the plume of the hollow cathode. Furthermore, the total electron collision frequency and its main contributor, the anomalous collision frequency due to high-frequency IAT, decrease at higher field strengths. The results included in this communication are, to the best of the authors’ knowledge, the first characterization of the response in low- and high-frequency wave content depending on a magnetic field in low-current hollow cathodes operating in standalone mode at \(<1\) A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Abbreviations

\(A_p\) :

Probe collection area, m\(^{2}\)

\(A_z\) :

Plume cross-sectional area, m\(^{2}\)

B :

Magnetic field strength,  T

CEVAC:

Cathode Experiments Vacuum Chamber

e :

Elementary charge, 1.602\(\times\)10\(^{-19}\) C

E :

Electric field strength,  V cm\(^{-1}\)

f :

Frequency,  Hz

IAT:

Ion acoustic turbulence

\(I_a\) :

Anode current, A

\(I_{a,std}\) :

Standard deviation of the anode current, A

\(I_k\) :

Keeper current, A

\(I_{sat}\) :

ion saturation current, A

\(J_e\) :

current density,  A

\(k_{B}\) :

Boltzmann’s constant, 1.38\(\times\)10\(^{-23}\) J K\(^{-1}\)

KE:

Knife-edge

\(L_{ca}\) :

Cathode–anode distance, m

\(\dot{m}\) :

Mass flow rate, kg s\(^{-1}\)

m :

Electron mass, 9.1\(\times\)10\(^{-31}\) kg

M :

Ion mass, kg

\(n_e\) :

Plasma (electron) density, m\(^{-3}\)

\(n_n\) :

Neutral density, m\(^{-3}\)

p :

Plasma pressure, N m\(^{-2}\)

PSAC:

Plasma Sources and Applications Centre

\(r_{ko}\) :

Keeper orifice radius,  m

\(T_e\) :

Electron temperature,  eV

\(T_i\) :

Ion temperature,  eV

\(T_g\) :

Neutral gas temperature,  eV

\(u_e\) :

Electron drift velocity,  m s\(^{-1}\)

\(U_{iz}\) :

Ionization reaction rate,  m\(^{3}\) s\(^{-1}\)

\(v_n\) :

Neutral thermal velocity,  m s\(^{-1}\)

z :

Axial distance,  m

\(\alpha\) :

Correction parameter

\(\phi _{em}\) :

Floating potential of the hot emissive probe, V

\(\phi _f\) :

Floating potential, V

\(\phi _p\) :

Plasma potential, V

\(\varphi\) :

Phase angle,  degrees

\(\eta\) :

Total plasma resistivity, \(\Omega \cdot {m}\)

\(\nu _{an}^{IAT}\) :

Anomalous collision frequency due to IAT,  Hz

\(\nu _{e}\) :

Total electron collision frequency,  Hz

\(\nu _{ei}\) :

Electron–ion collision frequency,  Hz

\(\nu _{en}\) :

Electron–neutral collision frequency,  Hz

\(\nu _{iz}\) :

Ionization collision frequency,  Hz

\(\theta\) :

Plume half-angle,  degrees

\(\sigma _{en}\) :

Electron–neutral scattering cross section, m\(^{2}\)

\(\sigma _{iz}\) :

Ionization cross section, m\(^{2}\)

\(\omega\) :

Oscillation frequency,  Hz

References

  1. Frongello, B.R., Hoskins, W.A., Cassagy, R.J., Kalkowska, L., Maliga, R.K.: Spacecraft electric propulsion at an inflection point. In: Proceedings of the ASCEND Conference. AIAA paper 2021-4151, Las Vegas, NV (2021)

  2. Mazouffre, S.: Electric propulsion for satellites and spacecraft: Established technologies and novel approaches. Plasma Sources Sci. Technol. 25, 033002 (2016)

    Article  Google Scholar 

  3. Potrivitu, G.-C., Mazouffre, S., Grimaud, L., Joussot, R.: Anode geometry influence on LaB\(_{6}\) cathode discharge characteristics. Phys. Plasmas 26, 113506 (2019)

    Article  Google Scholar 

  4. Goebel, D.M., Katz, I.: Fundam. Electric Propuls. Ion Hall Thrusters. JPL Space Science and Technology Series. Wiley & Sons, NJ (2008)

    Book  Google Scholar 

  5. Hall, S.J., Gray, T.G., Yim, J.T., Choi, M., Mooney, M.M., Sarver-Verhey, T.R., Kamhawi, H.: The Effect of a Hall Thruster-like Magnetic Field on Operation of a 25-A class Hollow Cathode. In: Proceedings of the 36th International Electric Propulsion Conference. IEPC paper 2019-300, Vienna, Austria (2019)

  6. Tilley, D.L., de Grys, K.H., Myers, R.M.: Hall thruster - cathode coupling. In: Proceedings of the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA paper 1999-2865, Los Angeles, CA (1999)

  7. Hofer, R.R., Johnson, L.K., Goebel, D.M., Fitzgerald, D.J.: Effects of an internally-mounted cathode on Hall thruster plume properties. In: Proceedings of the 42nd AIAA/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA paper 2006-4482, Sacramento, CA (2007)

  8. Sommerville, J.D., King, L.B.: Effect of cathode position on Hall-effect thruster performance and cathode coupling voltage. In: Proceedings of the 43rd AIAA/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA paper 2007-5174, Cincinnati, OH (2007)

  9. McDonald1, M.S., Gallimore, A.D.: Cathode Position and Orientation Effects on Cathode Coupling in a 6-kW Hall Thruster. In: Proceedings of the 35th International Electric Propulsion Conference. IEPC paper 2009-113, Ann Arbor, MI (2009)

  10. Bechtel, R.T.: Discharge chamber optimization of the SERT II thruster. J. Spacecr. Rocket. 5, 795–800 (1968)

    Article  Google Scholar 

  11. Knauer, W., Poeschel, R.L., Ward, J.W.: The radial field Kaufman thruster. In: Proceedings of the 7th Electric Propulsion Conference. AIAA paper 1969-259, Williamsburg, VA (2007)

  12. Tsikata, S., Hara, K., Mazouffre, S.: Characterization of hollow cathode plasma turbulence using coherent Thomson scattering. J. Appl. Phys. 130, 243304 (2021)

    Article  Google Scholar 

  13. Potrivitu, G.-C., Xu, L., Xu, S.: A low-current LaB\(_{6}\) open-end knife-edge emitter hollow cathode for low-power Hall thrusters. Plasma Sources Sci. Technol. 30, 085012 (2021)

    Article  Google Scholar 

  14. Goebel, D.M., Jameson, K.K., Katz, I., Mikellides, I.G.: Potential fluctuations and energetic ion production in hollow cathode discharges. Phys. Plasmas 14, 103508 (2007)

    Article  Google Scholar 

  15. Thomas, R.E., Kamhawi, H., Williams, G.J.: High current cathode plasma plume measurements. In: Proceedings of the 33rd International Electric Propulsion Conference. IEPC paper 2013-076, Washington, D.C. (2013)

  16. Becatti, G., Goebel, D.M., Zuin, M.: Observation of rotating magnetohydrodynamic modes in the plume of a high-current hollow cathode. J. Appl. Phys. 129, 033304 (2021)

    Article  Google Scholar 

  17. Georgin, M.P.: Ionization instability of the hollow cathode plume. Ph.D. thesis, University of Michigan, MI, USA (2020)

  18. Imaguchi, D., Watanabe, H., Imai, S., Funaki, I., Yamagiwa, Y.: Characterization of a hollow cathode plasma with magnetic fields. In: Proceedings of the AIAA Propulsion and Energy 2021 Forum. AIAA 2021-3388, Virtual event (2021)

  19. Becatti, G., Burgalassi, F., Paganucci, F., Zuin, M., Goebel, D.M.: Resistive MHD modes in hollow cathodes external plasma. Plasma Sources Sci. Technol. 31, 015016 (2022)

    Article  Google Scholar 

  20. Tanaka, S., Akiba, M., Horiike, H., Okumura, Y., Ohara, Y.: Effect of magnetic field on the characteristics of a hollow cathode ion source. Rev. Sci. Instrum. 54, 1104 (1983)

    Article  Google Scholar 

  21. Gabriel, S., Daykin-Iliopoulos, A., Praeger, M., Coletti, M.: Hollow cathode operation with different gases. In: Proceedings of the 35th International Electric Propulsion Conference. IEPC paper 2017-440, Hyogo-Kobe, Japan (2017)

  22. Lev, D.R., Mikellides, I.G., Pedrini, D., Goebel, D.M., Jorns, B.A., McDonald, M.S.: Recent progress in research and development of hollow cathodes for electric propulsion. Rev. Mod. Plasma Phys. 3, 6 (2019)

    Article  Google Scholar 

  23. Jorns, B.A., Hofer, R.R.: Low frequency plasma oscillations in a 6-kw magnetically shielded Hall thruster. In: Proceedings of the 49th AIAA/SAE/ASEE Joint Propulsion Conference. AIAA paper 2017-4119, San Jose, CA (2013)

  24. Hepner, S.T., Tang, E., Dale, E.T., Jorns, B.A.: Rotational waves in the plume of an externally-mounted Hall thruster cathode. AIAA J. 8, 1–5 (2021)

    Google Scholar 

  25. Mikellides, I.G., Ortega, A.L., Goebel, D.M., Becatti, G.: Dynamics of a hollow cathode discharge in the frequency range of 1–500 kHz. Plasma Sources Sci. Technol. 29, 035003 (2020)

    Article  Google Scholar 

  26. Mikellides, I..G., Guerrero, P., Ortega, A.L., Polk, J.E.: Spot-to-plume mode transition investigations in the HERMeS hollow cathode discharge using coupled 2-D axisymmetric plasma-thermal simulations. In: Proceedings of the 2018 Joint Propulsion Conference. AIAA paper 2018-4722, Cincinnati, OH (2018)

  27. Jorns, B.A., Mikellides, I.G., Goebel, D.M.: Ion acoustic turbulence in a 100-A LaB\(_{6}\) hollow cathode. Phys. Rev. E 90, 063106 (2014)

    Article  Google Scholar 

  28. Sary, G., Garrigues, L., Boeuf, J.-P.: Hollow cathode modeling: I A coupled plasma thermal two-dimensional model. Plasma Sources Sci. Technol. 26, 055007 (2017)

    Article  Google Scholar 

  29. Sary, G., Garrigues, L., Boeuf, J.-P.: Hollow cathode modeling: II Physical analysis and parametric study. Plasma Sources Sci. Technol. 26, 055008 (2017)

    Article  Google Scholar 

  30. Georgin, M.P., Jorns, B.A., Gallimore, A.D.: Correlation of ion acoustic turbulence with self-organization in a low-temperature plasma. Phys. Plasmas 26, 082308 (2019)

    Article  Google Scholar 

  31. Potrivitu, G.-C., Xu, S.: Evidence of the ionization instability and ion acoustic turbulence correlation in sub-ampere hollow cathodes. J. Electr. Propuls. 1, 6 (2022)

    Article  Google Scholar 

  32. Georgin, M.P., Jorns, B.A., Gallimore, A.D.: Dependence of low frequency waves on magnetic field strength in hollow cathode plume. In: Proceedings of the 36th International Electric Propulsion Conference. IEPC paper 2019-249, Vienna, Austria (2019)

  33. Pedrini, D., Ducci, C., Cesari, U., Misuri, T., Andrenucci, M.: SITAEL HC1 Low-Current Hollow Cathode. Aerospace 7, 96 (2020)

    Article  Google Scholar 

  34. Potrivitu, G.-C., Xu, L., Levchenko, I., Huang, S., Sun, Y., Rohaizat, M.W.A..B., Lim, J.W.M., Bazaka, K., Xu, S.: Mode transition in a low-current LaB\(_{6}\) hollow cathode for electric propulsion systems for small satellites. In: Proceedings of the 36th International Electric Propulsion Conference. IEPC paper 2019-427, Vienna, Austria (2019)

  35. Potrivitu, G.-C., Xu, L., Huang, S., Rohaizat, M.W.A.B., Xu, S.: Discharge mode transition in a krypton-fed 1 A-class LaB\(_{6}\) cathode for low-power Hall thrusters for small satellites. J. Appl. Phys. 127, 064501 (2019)

    Article  Google Scholar 

  36. Georgin, M.P., Jorns, B.A., Gallimore, A.D.: Transient non-classical transport in the hollow cathode plume I: measurements of time-varying electron collision frequency. Plasma Sources Sci. Technol. 29, 105010 (2020)

    Article  Google Scholar 

  37. Gurciullo, A., Fabris, A.L., Potterton, T.: Numerical study of a hollow cathode neutraliser by means of a zero-dimensional plasma model. Acta Astronaut. 174, 219–223 (2020)

    Article  Google Scholar 

  38. Potrivitu, G.-C., Xu, S.: Phenomenological plasma model for open-end emitter with orificed keeper hollow cathodes. Acta Astronaut. 191, 293–316 (2022)

    Article  Google Scholar 

  39. Jorns, B.A., Cusson, S.E., Brown, Z., Dale, E.: Non-classical electron transport in the cathode plume of a Hall effect thruster. Phys. Plasmas 27, 022311 (2020)

    Article  Google Scholar 

  40. Georgin, M.P., McDonald, M.S.: Experimental evaluation of the 2D nonclassical ohmic transport model for electrons in the hollow cathode plume. J. Appl. Phys. 130, 203301 (2021)

    Article  Google Scholar 

  41. Domonkos, M.T.: Evaluation of low-current orificed hollow cathodes. Ph.D. thesis, University of Michigan, Ann Arbor, MI, USA (1999)

  42. Sheehan, J.P., Hershkowitz, N.: Emissive probes. Plasma Sources Sci. Technol. 20, 063001 (2011)

    Article  Google Scholar 

  43. Sheehan, J.P., Raitses, Y., Hershkowitz, N., Kaganovich, I., Fisch, N.J.: A comparison of emissive probe techniques for electric potential measurements in a complex plasma. Phys. Plasmas 18, 073501 (2011)

    Article  Google Scholar 

  44. Hobbs, G.D., Wesson, J.A.: Heat flow through a Langmuir sheath in the presence of electron emission. Plasma Phys. 9, 85 (1967)

    Article  Google Scholar 

  45. Chen, F.F.: Langmuir probe diagnostics. In: IEEE-ICOPS Meeting. Mini-Course on Plasma Diagnostics, Jeju, Korea (2003)

  46. Nobata, K.: Characteristics of Langmuir probe in a strong magnetic field. Jpn. J. Appl. Phys. 2, 719–727 (1963)

    Article  Google Scholar 

  47. Grimaud, L., Pétin, A., Vaudolon, J., Mazouffre, S.: Perturbations induced by electrostatic probe in the discharge of Hall thrusters. Rev. Sci. Instrum. 87, 043506 (2016)

    Article  Google Scholar 

  48. Ito, T., Cappelli, M.A.: Electrostatic probe disruption of drift waves in magnetized microdischarges. Appl. Phys. Lett. 94, 211501 (2009)

    Article  Google Scholar 

  49. Herman, D.A., Gallimore, A.D.: Discharge cathode electron energy distribution functions in a 40-cm next-type ion engine. In: Proceedings of the 2005 Joint Propulsion Conference. AIAA paper 2005-4252, Tucson, AZ (2005)

  50. Reid, B.M., Gallimore, A.D.: Langmuir probe measurements in the discharge channel of a 6-kW Hall thruster. In: Proceedings of the 2008 Joint Propulsion Conference. AIAA paper 2008-4920, Hartford, CT (2008)

  51. Popov, T.K., Dimitrova, M., Ivanova, P., Hasan, E., Horáček, J., Dejarac, R., Stöckel, J., Weinzettl, V., Kovačič, J.: Langmuir probe evaluation of the plasma potential in tokamak edge plasma for non-maxwellian EEDF. Contrib. Plasma Phys. 54(3), 267–272 (2014)

    Article  Google Scholar 

  52. Potrivitu, G.-C., Joussot, R., Mazouffre, S.: Anode position influence on discharge modes of a LaB\(_{6}\) cathode in diode configuration. Vacuum 151, 122–132 (2018)

    Article  Google Scholar 

  53. Abernethy, R.B., Benedict, R.P., Dowdell, R.B.: ASME measurement uncertainty. J. Fluids Eng. 107, 161–164 (1985)

    Article  Google Scholar 

  54. Kline, S.J., McClintock, F.A.: Describing uncertainties in single sample experiments. Mech. Eng. 75, 3–8 (1953)

    Google Scholar 

  55. Joussot, R., Grimaud, L., Mazouffre, S.: Examination of a 5 A-class cathode with a LaB\(_{6}\) flat disk emitter in the 2 A-20 A current range. Vacuum 146, 52–62 (2017)

    Article  Google Scholar 

  56. Lev, D.R., Alon, G., Appel, L.: Low current heaterless hollow cathode neutralizer for plasma propulsion-development overview. Rev. Sci. Instrum. 90, 113303 (2019)

    Article  Google Scholar 

  57. Nikrant, A.: Development and modelling of a low current LaB\(_{6}\) heaterless hollow cathode. M.Sc. thesis, Virginia Polytechnic Institute and State University Blacksburg, VA, USA (2019)

  58. Kaufman, H.R.: Technology of Electron-Bombardment Ion Thrusters. Advances in Electronics and Electron Physics, vol. 36, pp. 265–373. Academic Press, New-York, NY (1974)

  59. Jack, T.M., Patterson, S.W., Fearn, D.G.: The effect of the keeper electrode on hollow cathode characteristics. In: Proceedings of the 36th Joint Propulsion Conference. AIAA paper 2000-3533, Huntsville, AL (2000)

  60. Hall, S.J., Gray, T.G., Sarver-Verhey, T.R., Kamhawi, H.: The Effect of Anode Configuration on the Plasma Plume of a 25-A class Hollow Cathode. In: Proceedings of the AIAA Propulsion and Energy 2021 Forum. AIAA 2021-3376, Virtual event (2021)

  61. Mikellides, I.G., Katz, I., Goebel, D.M., Jameson, K.K.: Evidence of nonclassical plasma transport in hollow cathodes for electric propulsion. J. Appl. Phys. 101, 063301, 055008 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Sedina Tsikata for her valuable insights into plasma instabilities and turbulence.

Funding

This work was supported by OSTIn-SRP/EDB through the National Research Foundation and in part by the Ministry of Education Singapore through MOE AcRF (RP6/16XS). George-Cristian Potrivitu acknowledges the support from the National Institute of Education Singapore through the NIE PhD Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George-Cristian Potrivitu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Consent for publication

The authors give their consent for publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potrivitu, GC., Xu, S. Ionization instability and turbulence in the plume of sub-ampere hollow cathodes depending on an applied magnetic field. CEAS Space J 15, 729–749 (2023). https://doi.org/10.1007/s12567-022-00478-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-022-00478-5

Keywords

Navigation