Skip to main content

Advanced manufacturing of titanium propellant tanks for space applications part 2: a comparative study of residual stresses

Abstract

Friction stir welding (FSW) was used to join cast Ti–6Al–4V hemisphere and cylinder parts to produce a spacecraft propellant tank with reduced costs and lead time compared to conventional manufacturing. As a potential source for failure, the weld was inspected for residual stresses using three different methods: non-destructive neutron and X-ray diffraction as well as destructive hole drilling. The results showed lower residual stresses in the friction stir weld compared to results from conventional welding techniques such as electron beam welding or tungsten inert gas welding. In the hoop direction, a typical M-shaped residual stress profile centered around the weld was observed for both neutron and X-ray diffraction. According to the acquired data, the peak residual stresses (tensile) were measured in the heat-affected zone, up to a maximum of ~ 200 MPa. The results from the three different techniques generally compared well with each other, considering the rather significant differences between the methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Temple-Smith, P., Dawes, C.J.: Friction stir butt welding. International Patent Application No. PCT/GB92/02203; 1991. G.B. Patent Application No. 9125978.8 (1991)

  2. 2.

    Ghidini, T.: Fatigue life predictions of friction stir welded joints by using fracture mechanics methods. VDI-Verlag GmbH, Düsseldorf (2006)

    Google Scholar 

  3. 3.

    Ghidini, T., Vugrin, T., Dalle Donne, C.: Residual stresses, defects and non-destructive evaluation of FSW joints. Weld. Int. (2005). https://doi.org/10.1533/wint.2005.3493

    Article  Google Scholar 

  4. 4.

    Pilchak, A.L., Juhas, M.C., Williams, J.C.: Microstructural changes due to friction stir processing of investment-cast Ti–6Al–4V. Metall. Mater. Trans. A. 38, 401–408 (2007). https://doi.org/10.1007/s11661-006-9061-x

    Article  Google Scholar 

  5. 5.

    Ma, Z.Y., Pilchak, A.L., Juhas, M.C., Williams, J.C.: Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scr. Mater. 58, 361–366 (2008). https://doi.org/10.1016/j.scriptamat.2007.09.062

    Article  Google Scholar 

  6. 6.

    Pilchak, A.L., Tang, W., Sahiner, H., Reynolds, A.P., Williams, J.C.: Microstructure evolution during friction stir welding of Mill-annealed Ti–6Al–4V. Metall. Mater. Trans. A. 42, 745–762 (2011). https://doi.org/10.1007/s11661-010-0439-4

    Article  Google Scholar 

  7. 7.

    Knipling, K.E., Fonda, R.W.: Microstructural evolution in Ti-5111 Friction Stir Welds. Metall. Mater. Trans. A. 42, 2312–2322 (2011). https://doi.org/10.1007/s11661-011-0630-2

    Article  Google Scholar 

  8. 8.

    Çam, G.: Friction stir welded structural materials: beyond Al-alloys. Int. Mater. Rev. 56, 1–48 (2011). https://doi.org/10.1179/095066010X12777205875750

    Article  Google Scholar 

  9. 9.

    Yoon, S., Ueji, R., Fujii, H.: Microstructure and texture distribution of Ti–6Al–4V alloy joints friction stir welded below beta-transus temperature. J. Mater. Process. Technol. 229, 390–397 (2015). https://doi.org/10.1016/j.jmatprotec.2015.09.041

    Article  Google Scholar 

  10. 10.

    Fall, A., Jahazi, M., Khdabandeh, A.R., Fesharaki, M.H.: Effect of process parameters on microstructure and mechanical properties of friction stir-welded Ti–6Al–4V joints. Int. J. Adv. Manuf. Technol. 91, 2919–2931 (2017). https://doi.org/10.1007/s00170-016-9527-y

    Article  Google Scholar 

  11. 11.

    Mironov, S., Sato, Y.S., Kokawa, H.: Friction-stir welding and processing of Ti–6Al–4V titanium alloy: a review. J. Mater. Sci. Technol. 34, 58 (2018). https://doi.org/10.1016/j.jmst.2017.10.018

    Article  Google Scholar 

  12. 12.

    John, R., Jata, K.V., Sadananda, K.: Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys. Int. J. Fatigue. 25, 939–948 (2003). https://doi.org/10.1016/j.ijfatigue.2003.08.002

    Article  Google Scholar 

  13. 13.

    Zhang, Y., Sato, Y.S., Kokawa, H., Park, S.H.C., Hirano, S.: Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds. Mater. Sci. Eng. A. 485, 448–455 (2008). https://doi.org/10.1016/j.msea.2007.08.051

    Article  Google Scholar 

  14. 14.

    Liu, H.J., Zhou, L., Liu, Q.W.: Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloy. Mater. Des. 31, 1650–1655 (2010). https://doi.org/10.1016/j.matdes.2009.08.025

    Article  Google Scholar 

  15. 15.

    Wu, L.H., Wang, D., Xiao, B.L., Ma, Z.Y.: Microstructural evolution of the thermo-mechanically affected zone in a Ti–6Al–4V friction stir welded joint. Scr. Mater. 78–79, 17–20 (2014). https://doi.org/10.1016/j.scriptamat.2014.01.017

    Article  Google Scholar 

  16. 16.

    Sanders, D.G., Edwards, P., Cantrell, A.M., Gangwar, K., Ramulu, M.: Friction stir-welded titanium alloy Ti–6Al–4V: Microstructure, mechanical and fracture properties. Jom. 67, 1054–1063 (2015). https://doi.org/10.1007/s11837-015-1376-x

    Article  Google Scholar 

  17. 17.

    Bruno, G., Dunn, B.D.: Surface and bulk residual stress in Ti6Al4V welded aerospace tanks. J. Press. Vessel Technol. 126, 284–292 (2004). https://doi.org/10.1115/1.1763932

    Article  Google Scholar 

  18. 18.

    Pasta, S., Reynolds, A.P.: Residual stress effects on fatigue crack growth in a Ti–6Al–4V friction stir weld. Fatigue Fract. Eng. Mater. Struct. 31, 569–580 (2008). https://doi.org/10.1111/j.1460-2695.2008.01258.x

    Article  Google Scholar 

  19. 19.

    Edwards, P., Ramulu, M.: Surface residual stresses in Ti–6Al–4V friction stir welds: pre- and post-thermal stress relief. J. Mater. Eng. Perform. 24, 3263–3270 (2015). https://doi.org/10.1007/s11665-015-1610-2

    Article  Google Scholar 

  20. 20.

    ECSS-E-ST-32-01C: Space Engineering—Fracture Control. Eur. Coop. Sp. Stand. Rev. 1. https://ecss.nl/standard/ecss-e-st-32-01c-rev-2-fracture-control-30-july-2021/ (2009)

  21. 21.

    NASA-STD-5019: Fracture control requirements for spaceflight hardware. NASA. https://standards.nasa.gov/sites/default/files/nasa-std-5019a.pdf (2008)

  22. 22.

    Steuwer, A., Hattingh, D.G., James, M.N., Singh, U., Buslaps, T.: Residual stresses, microstructure and tensile properties in Ti–6Al–4V friction stir welds. Sci. Technol. Weld. Join. 17, 525–533 (2012). https://doi.org/10.1179/136217112X13439160184196

    Article  Google Scholar 

  23. 23.

    Withers, P.J., Bhadeshia, H.K.D.H.: Residual stress Part 2—Nature and origins. Mater. Sci. Technol. 17, 366–375 (2001). https://doi.org/10.1179/026708301101510087

    Article  Google Scholar 

  24. 24.

    Meisnar, M., Bennett, J.M., Andrews, D., Dodds, S., Freeman, R., Bellarosa, R., Adams, D., Norman, A.F., Rohr, T., Ghidini, T.: Microstructure characterization of a friction stir welded hemi-cylinder structure using Ti–6Al–4V castings. Mater. Charact. 147, 286–294 (2019). https://doi.org/10.1016/j.matchar.2018.11.019

    Article  Google Scholar 

  25. 25.

    Martin, J.P.: Stationary shoulder friction stir welding. In: Proc. 1st Int. Jt. Symp. Join. Weld., pp. 477–482. Woodhead Publishing (2013). https://doi.org/10.1533/978-1-78242-164-1.477

  26. 26.

    Jiang, X., Wynne, B.P., Martin, J.: Microstructure and texture evolution of stationary shoulder friction stir welded Ti6Al4V alloy. Sci. Technol. Weld. Join. 20, 594–600 (2015). https://doi.org/10.1179/1362171815Y.0000000043

    Article  Google Scholar 

  27. 27.

    Daymond, M., Edwards, L.: Scientific review: ENGIN-X: a fully refined diffractometer designed specifically for measurement of stress. Neutron News 15, 24–29 (2004). https://doi.org/10.1080/00323910490970573

    Article  Google Scholar 

  28. 28.

    Santisteban, J.R., Daymond, M.R., James, J.A., Edwards, L.: ENGIN-X: a third-generation neutron strain scanner. J. Appl. Crystallogr. 39, 812–825 (2006). https://doi.org/10.1107/S0021889806042245

    Article  Google Scholar 

  29. 29.

    Pawley, G.S.: Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 14, 357–361 (1981). https://doi.org/10.1107/S0021889881009618

    Article  Google Scholar 

  30. 30.

    Toby, B.H., Von Dreele, R.B.: {\it GSAS-II}: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013). https://doi.org/10.1107/S0021889813003531

    Article  Google Scholar 

  31. 31.

    Frankel, P., Preuss, M., Steuwer, A., Withers, P.J., Bray, S.: Comparison of residual stresses in Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo linear friction welds. Mater. Sci. Technol. 25, 640–650 (2009). https://doi.org/10.1179/174328408X332825

    Article  Google Scholar 

  32. 32.

    Romero, J., Attallah, M.M., Preuss, M., Karadge, M., Bray, S.E.: Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4V linear friction welds. Acta Mater. 57, 5582–5592 (2009). https://doi.org/10.1016/j.actamat.2009.07.055

    Article  Google Scholar 

  33. 33.

    Daymond, M., Bonner, N.W.: Measurement of strain in a titanium linear friction weld by neutron diffraction. Phys. B Condens Matter (2003). https://doi.org/10.1016/S0921-4526(02)01514-4

    Article  Google Scholar 

  34. 34.

    Jun, T.-S., Hofmann, F., Hofmann, M., Korsunsky, A.M.: Residual stress characterization in 12%-Cr steel friction stir welds by neutron diffraction. J. Strain Anal. Eng. Des. 47, 203–213 (2012). https://doi.org/10.1177/0309324712441433

    Article  Google Scholar 

  35. 35.

    Withers, P.J., Preuss, M., Steuwer, A., Pang, J.W.L.: Methods for obtaining the strain-free lattice parameter when using diffraction to determine residual stress. J. Appl. Crystallogr. 40, 891–904 (2007). https://doi.org/10.1107/S0021889807030269

    Article  Google Scholar 

  36. 36.

    Altenkirch, J., Peel, M.J., Steuwer, A., Withers, P.J.: Comparison of methods to determine variations in unstrained unit cell parameter across welds. J. Strain Anal. Eng. Des. 46, 651–662 (2011). https://doi.org/10.1177/0959651811414643

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding source of this project, the ESA GSTP activity “Friction stir welded low-cost titanium propellant tank” and the UK Space Agency, as well as the project partners The Welding Institute (TWI) and Airbus UK. Many thanks also to UKRI, STFC ITAC, the ESA-RAL Advanced Manufacturing Laboratory, and the ESTEC laboratories for facilitating this work. Finally, the authors thank the ISIS neutron source, the Engin-X beamline, and its staff for their contributions.

Funding

European Space Agency GSTP program, UK Space Agency.

Author information

Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Martina Meisnar.

Ethics declarations

Conflict of interest

There are no conflicts of interest known to the authors.

Availability of data and materials

The data are available in the repository of the European Space Agency.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meisnar, M., Bennett, J.M., Andrews, D. et al. Advanced manufacturing of titanium propellant tanks for space applications part 2: a comparative study of residual stresses. CEAS Space J (2021). https://doi.org/10.1007/s12567-021-00398-w

Download citation

Keywords

  • Friction-stir welding
  • Ti–6Al–4V
  • Residual stress
  • XRD
  • Neutron diffraction
  • Hole drilling