Skip to main content
Log in

Design and development of iodine flow control systems for miniaturized propulsion systems

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The high density of iodine, and its storage in solid form with no pressurization requirements, have driven the increase on the use of the halogen for space propulsion systems. This paper presents the design and development process of a miniaturized propellant management system which can supply iodine at a stable mass flow rate to the thrusters. This system approach has been adapted to produce the flow control units of the NPT30-I2 gridded ion propulsion system and the I2T5 cold gas thruster, both of which have performed their first in-orbit demonstration flights. The paper is dedicated to the description of the design process, with a focus on the particularities of the use of iodine for space propulsion systems, mainly related to chemical interaction and deposition. The numerical analysis of rarefied flows serves as a base for the design of the flow path elements of the system. A performance characterization of the system obtained on ground and the challenges tackled during the development process are evaluated with the in-orbit data from the first flight missions of both propulsion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Tverdokhlebov. O.S., Semenkin, A.V.: Iodine propellant for electric propulsion-To be or not to be. In: 37th Joint Propulsion Conference and Exhibit (2001)

  2. Martínez Martínez, J., Rafalskyi, D., Aanesland, A.: Development and Testing of the NPT30-I2 Iodine Ion Thruster. In: IEPC, Vienna (2019)

  3. Szabo, J.J., Robin, M., Paintal, S., Pote, B., Hruby, V., Freeman, C.: Iodine Propellant Space Propulsion. In: 33rd International Electric Propulsion Conference, USA (2013)

  4. Vasiljevich, I., Tajmar, M., Grienauer, W., Plesescu, F., Buldrini, N., González del Amo, J., Carnicero Domínguez, B., Betto, M.: Development of an Indium mN-FEEP Thruster. In: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford (2008)

  5. Szabo, J., Robin, M., Hruby, V.: Bismuth Vapor Hall Effect Thruster Performance and Plume Experiments. In: 35th International Electric Propulsion Conference, Atlanta, Georgia (2017)

  6. Asakawa, J., Hiroyuki, K., Nishii, K., Takeda, N., Murohara, M., Funase, R., Komurasaki, K.: Fundamental Ground Experiment of a Water Resistojet Propulsion System: AQUARIUS Installed on a 6U CubeSat: EQUULEUS. Trans Japan Soc Aeronaut Space Sci 16(5), 427–431 (2018)

    Google Scholar 

  7. Wilburn, G., Asphaug, E., Thangavelautham, J.: A Milli-Newton Propulsion System for the Asteroid Mobile Imager and Geologic Observer (AMIGO). In: IEEE Aerospace Conference (2019)

  8. Martínez Martínez, J., Rafalskyi, D., Aanesland, A., Laurand, X., Vega Martínez, S., Quinsac G.: An off-axis iodine propulsion system for the Robusta-3A mission. In: 34th Annual Small Satellite Conference, Logan, Utah (2020)

  9. National Institute of Standards and Technology (NIST), NIST Chemistry WebBook, Standard Reference Database 69 [Online]. Available: https://webbook.nist.gov/cgi/cbook.cgi?ID=7553-56-2. [Accessed 05 01 2021]

  10. Dressler, R., Chiu, Y., Levandier, D.: Propellant alternatives for ion and Hall effect thrusters. In: 28th Aerospace Sciences Meeting, Reno (2000)

  11. Szabo, J., Robin, M., Paintal, S., Pote, S., Hruby y C, V.: Freeman, «iodine plasma propulsion test results at 1–10 kW,» IEEE transactions on plasma science, vol. 43, no 1 (2015)

  12. Polzin, K.A., Seixal, J.F., Mauro, S.L., Burt, A.O., Martínez, A., Martin, A.K.: The iodine satellite (iSat) propellant feed system - design and development. In: 35th International Electric Propulsion Conference, Atlanta (2017)

  13. Manente, M., Trezzolani, F., Mantellato, R., Scalzi, D., Schiavon, A., Souhair, N., Duzzi, M., Barato, F., Cappellini, L., Barbato, A., Paulon, D., Selmo, A., Bellomo, N., Gloder, A., Toson, E., Minute, M., Magarotto, M., Pavarin, D.: "Regulus: iodine fed plasma propulsion system for small satellites. In: 36th International Electric Propulsion Conference, Vienna (2019)

  14. Martín Saravia, M., Bernazzani, L., Ceccarini, A., Vinci y F. Paganucci, A.E.: «Modelling and characterization of a thermally controlled iodine feeding system for electric propulsion applications,» Aerospace, vol. 7, no 2 (2020)

  15. Taillefer, Z. R., Blandino y J. Szabo, J.J., «Characterization of a barium oxide cathode operating on xenon and iodine propellants,» J. Propuls. Power, 36(4), (2020)

  16. (NIST), National Institute of Standards and Technology, WebBook de Chimie, NIST, SRD 69. [Online]. Available: https://webbook.nist.gov/cgi/cbook.cgi?ID=7553-56-2

  17. Smith, T. D., Kamhawi, H., Hickman, T., Haag, T., Dankanich, J., Polzin, K., Byrne y J. Szabo, L.: «Overview of NASA iodine hall thruster propulsion system development» (2016)

  18. Martínez Martínez, J., Rafalskyi, D.: Reservoir de propulseur avec système de commande marche-arrêt du flux de gas, propulseur et engin spatial intégrant un tel système de commande". ThrustMe Patent Demande de brévet no 1901159, (2019)

  19. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford Engineering Series (1994)

    Google Scholar 

  20. White, C., Borg, M.K., Scanlon, T.J., Longshaw, S.M., John, B., Emerson, D.R., Reese, J.M.: dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver. Comput. Phys. Commun. 224, 22–43 (2018)

    Article  Google Scholar 

  21. Alexeenko, A.A., Hitt, D.L.: Design considerations for supersonic micronozzles. Int. J. Manufact. Res. (2008)

  22. Zorzoli Rossi, E., Rafalskyi, D., Dudin, S., Martínez Martínez, J.: Direct thrust measurements of an iodine cold gas propulsion system. In: 7th Space Propulsion Conference (2021)

  23. Martínez Martínez, J., Rafalskyi, D., Zorzoli Rossi, E., Aanesland, A.: Development, qualification and first flight data of the iodine based cold gas thruster for cubesats. In: IAA, Rome (2019)

Download references

Acknowledgements

The authors would like to thank the French Government (Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation) for the financing of the project through the i-Lab 2017 grant (Le Grand Prix I-LAB 2017—19th Concours Nationale d’Aide à la Création d’Entreprises des Technologies Innovantes). The authors would like to thank as well the French Aerospace Center (CNES) for the financing of the project through the INODIN grant, R&T action R-S19/PF-0002-108-92.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martínez Martínez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez Martínez, J., Rafalskyi, D. Design and development of iodine flow control systems for miniaturized propulsion systems. CEAS Space J 14, 91–107 (2022). https://doi.org/10.1007/s12567-021-00384-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-021-00384-2

Keywords

Navigation