Optimal science-time reorientation policy for the Comet Interceptor flyby via sequential convex programming


This paper introduces an algorithm to perform optimal reorientation of a spacecraft during a high speed flyby mission that maximizes the time a certain target is kept within the field of view of scientific instruments. The method directly handles the nonlinear dynamics of the spacecraft, sun exclusion constraint, torque and momentum limits on the reaction wheels as well as potential faults in these actuators. A sequential convex programming approach was used to reformulate non-convex pointing objectives and other constraints in terms of a series of novel convex cardinality minimization problems. These subproblems were then efficiently solved even on limited hardware resources using convex programming solvers implementing second-order conic constraints. The proposed method was applied to a scenario that involved maximizing the science time for the upcoming Comet Interceptor flyby mission developed by the European Space Agency. Extensive simulation results demonstrate the capability of the approach to generate viable trajectories even in the presence of reaction wheel failures or prior dust particle impacts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    The code necessary to reproduce all of the results presented in this paper is available at https://github.com/valentinpreda/scvx_comet_interceptor.


  1. 1.

    Snodgrass, C., Jones, G.H.: The European Space Agency’s Comet Interceptor lies in wait. Nat. Commun. 10(1), 5418 (2019)

    Article  Google Scholar 

  2. 2.

    Schwamb, M.E., Knight, M.M., Jones, G.H., Snodgrass, C., Bucci, L., Pérez, J.M.S., Skuppin, N.: Potential backup targets for comet interceptor. Res. Notes AAS 4(2), 21 (2020)

    Article  Google Scholar 

  3. 3.

    Kjellberg, H.C., Lightsey, E.G.: Discretized constrained attitude pathfinding and control for satellites. J Guid. Control Dyn. 36(5), 1301–1309 (2013)

    Article  Google Scholar 

  4. 4.

    Tanygin, S.: Fast autonomous three-axis constrained attitude pathfinding and visualization for boresight alignment. J Guid. Control Dyn. 40(2), 358–370 (2017)

    Article  Google Scholar 

  5. 5.

    Feron, E., Dahleh, M., Frazzoli, E., Kornfeld, R.: A randomized attitude slew planning algorithm for autonomous spacecraft, (2001)

  6. 6.

    Cui, P., Zhong, W., Cui, H.: Onboard Spacecraft Slew-Planning by Heuristic State-Space Search and Optimization. In 2007 International Conference on Mechatronics and Automation, pages 2115–2119. IEEE, (2007)

  7. 7.

    Singh, G., Macala, G., Wong, E., Rasmussen, R., Singh, G., Macala, G., Wong, E., Rasmussen, R.: A constraint monitor algorithm for the Cassini spacecraft, (1997)

  8. 8.

    Qinglei, H., Liu, Y., Dong, H., Zhang, Y.: Saturated attitude control for rigid spacecraft under attitude constraints. J Guid. Control Dyn. 43(4), 790–805 (2020)

    Article  Google Scholar 

  9. 9.

    Avanzini, G., Radice, G., Ali, I.: Potential approach for constrained autonomous manoeuvres of a spacecraft equipped with a cluster of control moment gyroscopes. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 223(3), 285–296 (2009)

    Article  Google Scholar 

  10. 10.

    Radice, G., Casasco, M.: On different parameterisation methods to analyse spacecraft attitude manoeuvres in the presence of attitude constraints. Aeronaut. J. 111(1119), 335–342 (2007)

    Article  Google Scholar 

  11. 11.

    Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In IEEE International Conference on Robotics and Automation, pages 1398–1404. IEEE Comput. Soc. Press, (1991)

  12. 12.

    Liu, X., Ping, L., Pan, B.: Survey of convex optimization for aerospace applications. Astrodynamics 1(1), 23–40 (2017)

    Article  Google Scholar 

  13. 13.

    Dueri, D.A.: Real-time Optimization in Aerospace Systems. PhD thesis, University of Washington, (2018)

  14. 14.

    Eren, U., Prach, A., Koçer, B.B., Raković, S.V., Kayacan, E., Açıkmeşe, B.: Model Predictive Control in Aerospace Systems: Current State and Opportunities. J Guid. Control Dyn. 40(7), 1541–1566 (2017)

    Article  Google Scholar 

  15. 15.

    Pinson, R.M., Ping, L.: Trajectory design employing convex optimization for landing on irregularly shaped asteroids. J Guid. Control Dyn. 41(6), 1243–1256 (2018)

    Article  Google Scholar 

  16. 16.

    Harris, M.W., Açıkmeşe, B.: Maximum divert for planetary landing using convex optimization. J. Optim. Theory Appl. 162(3), 975–995 (2014)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Acikmese, B., Carson, J.M., Blackmore, L.: Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem. IEEE Trans. Control Syst. Technol. 21(6), 2104–2113 (2013)

    Article  Google Scholar 

  18. 18.

    Malyuta, D., Reynolds, T., Szmuk, M., Mesbahi, M., Acikmese, B., Carson, J.M.: Discretization performance and accuracy analysis for the rocket powered descent guidance problem, (2019)

  19. 19.

    Virgili-Llop, J., Romano, M.: Simultaneous Capture and Detumble of a Resident Space Object by a Free-Flying Spacecraft-Manipulator System. Frontiers in Robotics and AI 6, (2019)

  20. 20.

    Ping, L., Liu, X.: Autonomous trajectory planning for rendezvous and proximity operations by conic optimization. J Guid. Control Dyn. 36(2), 375–389 (2013)

    Article  Google Scholar 

  21. 21.

    Morgan, D., Subramanian, G.P., Chung, S.-J., Hadaegh, F.Y.: Swarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programming. Int. J. Robot. Res. 35(10), 1261–1285 (2016)

    Article  Google Scholar 

  22. 22.

    Mao, Y., Szmuk, M., Acikmese, B.: Successive convexification of non-convex optimal control problems and its convergence properties. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 3636–3641. IEEE, (2016)

  23. 23.

    Bonalli, R., Cauligi, A., Bylard, A., Pavone, M.: GuSTO: Guaranteed Sequential Trajectory optimization via Sequential Convex Programming. In 2019 International Conference on Robotics and Automation (ICRA), pages 6741–6747. IEEE, (2019)

  24. 24.

    Szmuk, M., Reynolds, T.P., Acikmese, B.: Successive convexification for real-time 6-DoF powered descent guidance with state-triggered constraints, (2018)

  25. 25.

    Kim, Y., Mesbahi, M., Singh, G., Hadaegh, F.: On the constrained attitude control problem, (2004)

  26. 26.

    Lee, U., Mesbahi, M.: Spacecraft synchronization in the presence of attitude constrained zones. In 2012 American Control Conference (ACC), pages 6071–6076. IEEE, (2012)

  27. 27.

    Tam, M., Lightsey, E.G.: Constrained spacecraft reorientation using mixed integer convex programming. Acta Astronaut. 127, 31–40 (2016)

    Article  Google Scholar 

  28. 28.

    Eren, U., Acikmese, B., Scharf, D.P.: A mixed integer convex programming approach to Constrained Attitude Guidance. In 2015 European Control Conference (ECC), pages 1120–1126. IEEE, (2015)

  29. 29.

    Malyuta, D., Reynolds, T., Szmuk, M., Acikmese, B., Mesbahi, M.: Fast Trajectory Optimization via Successive Convexification for Spacecraft Rendezvous with Integer Constraints. In AIAA Scitech 2020 Forum, Reston, Virginia, (2020). American Institute of Aeronautics and Astronautics

  30. 30.

    Kim, Y., Mesbahi, M., Singh, G., Hadaegh, F.Y.: On the Convex Parameterization of Constrained Spacecraft Reorientation. IEEE Trans. Aerosp. Electron. Syst. 46(3), 1097–1109 (2010)

    Article  Google Scholar 

  31. 31.

    Virgili-Llop, J., Zagaris, C., Zappulla, R., Bradstreet, A., Romano, M.: A convex-programming-based guidance algorithm to capture a tumbling object on orbit using a spacecraft equipped with a robotic manipulator. Int. J. Robot. Res. 38(1), 40–72 (2019)

    Article  Google Scholar 

  32. 32.

    Stephen Boyd: l1-norm Methods for Convex Cardinality Problems, (2007)

  33. 33.

    Dueri, D., Mao, Y., Mian, Z., Ding, J., Acikmese, B.: Trajectory optimization with inter-sample obstacle avoidance via successive convexification. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 1150–1156. IEEE, (2017)

  34. 34.

    Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods, volume 1. Society for Industrial and Applied Mathematics, (2000)

  35. 35.

    Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. J. Control Decis. 5(1), 42–60 (2018)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Domahidi, A., Chu, E., Boyd, S.: ECOS: An SOCP solver for embedded systems. In 2013 European Control Conference (ECC), pages 3071–3076. IEEE, (2013)

Download references

Author information



Corresponding author

Correspondence to Valentin Preda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Preda, V., Hyslop, A. & Bennani, S. Optimal science-time reorientation policy for the Comet Interceptor flyby via sequential convex programming. CEAS Space J (2021). https://doi.org/10.1007/s12567-021-00368-2

Download citation


  • Convex programming
  • Attitude guidance and control
  • Trajectory optimization
  • Comet interceptor