Skip to main content
Log in

On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

For a satellite formation to maintain its intended design despite present perturbations (formation keeping), to change the formation design (reconfiguration) or to perform a rendezvous maneuver, control forces need to be generated. To do so, chemical and/or electric thrusters are currently the methods of choice. However, their utilization has detrimental effects on small satellites’ limited mass, volume and power budgets. Since the mid-80s, the potential of using differential drag as a means of propellant-less source of control for satellite formation flight is actively researched. This method consists of varying the aerodynamic drag experienced by different spacecraft, thus generating differential accelerations between them. Its main disadvantage, that its controllability is mainly limited to the in-plain relative motion, can be overcome using differential lift as a means to control the out-of-plane motion. Due to its promising benefits, a variety of studies from researchers around the world have enhanced the state-of-the-art over the past decades which results in a multitude of available literature. In this paper, an extensive literature review of the efforts which led to the current state-of-the-art of different lift and drag-based satellite formation control is presented. Based on the insights gained during the review process, key knowledge gaps that need to be addressed in the field of differential lift to enhance the current state-of-the-art are revealed and discussed. In closer detail, the interdependence between the feasibility domain/the maneuver time and increased differential lift forces achieved using advanced satellite surface materials promoting quasi-specular or specular reflection, as currently being developed in the course of the DISCOVERER project, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Figure design taken from [26]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. At the same time, its kinetic energy is increased. This phenomena is often referred to as satellite drag paradox [16].

  2. J2 is the second order harmonic of Earth’s gravitational potential field.

  3. Disruptive Technologies for Very Low Earth Orbit Platforms, https://discoverer.space/.

References

  1. Kristiansen, R., Nicklasson, P.J.: Spacecraft formation flying. A review and new results on state feedback control. Acta Astronaut. 65((11–12)), 1537–1552 (2009)

    Google Scholar 

  2. Bandyopadhyay, S., Subramanian, G.P., Foust, R., Morgan, D., Chung, S.-J., Hadaegh, F.Y.: A review of impending small satellite formation flying missions. In: 53rd AIAA aerospace sciences meeting, Kissimmee, Florida, USA (2015)

  3. Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: A survey of spacecraft formation flying guidance and control (part I): Guidance. Guidance. In: Proceedings of the 2003 American Control Conference. ACC, June 4–6, 2003, the Adams Mark Hotel, Denver, Colorado, USA, pp. 1733–1739. IEEE, Denver, Colorado, USA (2003)

  4. Yeh, H.-H., Sparks, A.: Geometry and control of satellite formations. In: Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), 384-388 vol.1. IEEE, Chicago, IL, USA (2000)

  5. Hill, G.W.: Researches in the Lunar theory. Am. J. Math. 1(1), 5 (1878)

    MathSciNet  MATH  Google Scholar 

  6. Clohessy, W.H., Wiltshire, R.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27(9), 653–658 (1960)

    MATH  Google Scholar 

  7. Vallado, D.A., McClain, W.D.: Fundamentals of astrodynamics and applications, 4th edn. Space Technology Library. Published by Microcosm Press, Hawthorne (2013)

  8. Schaub, H., Alfriend, K.T.: J2 Invariant relative orbits for spacecraft formations. Celest. Mech. Dyn. Astr. 79(2), 77–95 (2001)

    MATH  Google Scholar 

  9. Crisp, N.H., Smith, K., Hollingsworth, P.: Launch and deployment of distributed small satellite systems. Acta Astronaut. 114, 65–78 (2015)

    Google Scholar 

  10. Williams, T., Wang, Z.-S.: Uses of solar radiation pressure for satellite formation flight. Int. J. Robust Nonlinear Control 12(2–3), 163–183 (2002)

    MATH  Google Scholar 

  11. Tsujii, S., Bando, M., Yamakawa, H.: Spacecraft formation flying dynamics and control using the geomagnetic lorentz force. J. Guid. Control Dyn. 36(1), 136–148 (2013)

    Google Scholar 

  12. Peck, M.A., Streetman, B., Saaj, C.M., Lappas, V.: Spacecraft formation flying using lorentz forces. J. Br. Interplanet. Soc. 60, 263–267 (2007)

    Google Scholar 

  13. Schaub, H., Parker, G.G., King, L.B.: Challenges and prospects of coulomb spacecraft formations. Adv. Astronaut. Sci. 115, 1 (2003)

    Google Scholar 

  14. King, L., Parker, G., Deshmukh, S., Chong, J.: Spacecraft formation-flying using inter-vehicle coulomb forces. Final Report for Phase I Research Sponsored by NIAC—NASA Institute for Advanced Concepts. Michigan Technological University (2002)

  15. Walberg, G.D.: A survey of aeroassisted orbit transfer. J. Spacecr. Rockets 22(1), 3–18 (1985)

    Google Scholar 

  16. Blitzer, L.: Satellite orbit paradoxon a general view. Am. J. Phys. 39(1971), 887 (1971)

    Google Scholar 

  17. Leonard, C.L.: Formation keeping of Spacecraft via Differential Drag. Master Thesis, Massachusetts Institute of Techology (1986)

  18. Mason, C., Tilton, G., Vazirani, N., Spinazola, J., Guglielmo, D., Robinson, S., Bevilacqua, R., Samuel, J.: Origami-based drag sail for cubesat propellant-free maneuvering. In: 5th Nano-Satellite Symposium, Tokyo, Japan (2013)

  19. Ben-Yaacov, O., Gurfil, P.: Stability and performance of orbital elements feedback for cluster keeping using differential drag. J. Astronaut. Sci. 61(2), 198–226 (2014)

    Google Scholar 

  20. Horsley, M.: An investigation into using differential drag for controlling a formation of cubesats. In: Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, United States (2011)

  21. Doornbos, E.: Thermospheric density and wind determination from satellite dynamics. Springer, Heidelberg (2012)

    Google Scholar 

  22. Ching, B.K., Hickman, D.R., Straus, J.M.: Effects of atmospheric winds and aerodynnamic lift on the inclination of the orbit of the S3-1 satellite. Interim Report, Space and Missle Systems Organization Air Force System Command (1976)

  23. Moore, P.: The effect of aerodynamic lift on near-circular satellite orbits. Planet. Space Sci. 33(5), 479–491 (1985)

    Google Scholar 

  24. Schweighart, S.: Development and analysis of a high fidelity linearized J2 model for satellite formation flying. Master’s Thesis, Massachusetts Institute of Techology (2001)

  25. Schweighart, S.A., Sedwick, R.J.: High-fidelity linearized J2 model for satellite formation flight. J. Guid. Control Dyn. 25(6), 1073–1080 (2002)

    Google Scholar 

  26. Shao, X., Song, M., Zhang, D., Sun, R.: Satellite rendezvous using differential aerodynamic forces under J2 perturbation. Aircraft Eng Aerosp Tech 87(5), 427–436 (2015)

    Google Scholar 

  27. Smith, B., Boyce, R., Brown, L., Garratt, M.: Investigation into the practicability of differential lift-based spacecraft rendezvous. J. Guid. Control Dyn. 40(10), 2682–2689 (2017)

    Google Scholar 

  28. Patera, R.: Drag modulation as a means of mitigating casualty risk for random reentry. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit. American Institute of Aeronautics and Astronautics, San Francisco, California (2005)

  29. Alemán, S.: Satellite reentry control via surface area amplification. Master Thesis, Air Force Institute of Technology (2009)

  30. Virgili-Llop, J., Roberts, P.C.E., Hara, N.C.: Atmospheric interface reentry point targeting using aerodynamic drag control. J. Guid. Control Dyn. 38(3), 403–413 (2015)

    Google Scholar 

  31. Omar, S.R., Bevilacqua, R.: Spacecraft de-orbit point targeting using aerodynamic drag. In: AIAA Guidance, Navigation, and Control Conference. American Institute of Aeronautics and Astronautics, Grapevine, Texas (2017)

  32. Omar, S.R., Bevilacqua, R., Guglielmo, D., Fineberg, L., Treptow, J., Clark, S., Johnson, Y.: Spacecraft deorbit point targeting using aerodynamic drag. J. Guid. Control Dyn. 40(10), 2646–2652 (2017)

    Google Scholar 

  33. Varma, S., Kumar, K.D.: Satellite formation flying using differential aerodynamic drag. In: Proceedings of the 20th AAS/AIAA Space Flight Mechanics Meeting—AAS10-11, San Diego, CA (2010)

  34. Varma, S., Kumar, K.D.: Satellite formation flying using solar radiation pressure and/or aerodynamic drag. In: Proceedings of the 12th International Space Conference of Pacific-basin Societies (ISCOPS), Montreal, Quebec, Canada (2010)

  35. Varma, S., Kumar, K.D.: Multiple satellite formation flying using differential aerodynamic drag. J. Spacecr Rockets 49(2), 325–336 (2012)

    Google Scholar 

  36. Harris, M.W., Açıkmeşe, B.: Minimum time rendezvous of multiple spacecraft using differential drag. J. Guid. Control Dyn. 37(2), 365–373 (2014)

    Google Scholar 

  37. Chesi, S., Gong, Q., Romano, M.: Aerodynamic three-axis attitude stabilization of a spacecraft by center-of-mass shifting. J. Guid. Control Dyn. 40(7), 1613–1626 (2017)

    Google Scholar 

  38. Mishne, D., Edlerman, E.: Collision-avoidance maneuver of satellites using drag and solar radiation pressure. J. Guid. Control Dyn. 40(5), 1191–1205 (2017)

    Google Scholar 

  39. Leonard, C.L., Hollister, W., Bergmann, E.: Orbital formation keeping with differential drag. J. Guid. Control Dyn. 12(1), 108–113 (1987)

    Google Scholar 

  40. Palmerini, G.B., Sgubini, S., Taini, G.: Spacecraft orbit control using air drag. In: 56th International Astronautical Congress, Fukuoka, Japan (2005)

  41. Carter, T., Humi, M.: Clohessy-Wiltshire equations modified to include quadratic drag. J. Guid. Control Dyn. 25(6), 1058–1063 (2002)

    Google Scholar 

  42. Kumar, B.S., Ng, A.: A bang-bang control approach to maneuver spacecraft in a formation with differential drag. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii (2008)

  43. Bevilacqua, R., Romano, M.: Rendezvous Maneuvers of multiple spacecraft using differential drag under J2 perturbation. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii (2008)

  44. Bevilacqua, R., Romano, M.: Rendezvous maneuvers of multiple spacecraft using differential drag under J2 perturbation. J. Guid. Control Dyn. 31(6), 1595–1607 (2008)

    Google Scholar 

  45. Bevilacqua, R., Hall, J.S., Romano, M.: Multiple spacecraft rendezvous maneuvers by differential drag and low thrust engines. Celest. Mech. Dyn. Astron. 106(1), 69–88 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Pérez, D., Bevilacqua, R.: Feedback Control of Spacecraft Rendezvous Maneuvers using Differential Drag (2011). http://riccardobevilacqua.com/

  47. Pérez, D., Bevilacqua, R.: Lyapunov-based spacecraft rendezvous maneuvers using differential drag. In: AIAA Guidance, Navigation, and Control Conference, Portland, Oregon (2011)

  48. Curti, F., Romano, M., Bevilacqua, R.: Lyapunov-Based thrusters’ selection for spacecraft control. Analysis and experimentation. J. Guid. Control Dyn. 33(4), 1143–1160 (2010)

    Google Scholar 

  49. Pérez, D., Bevilacqua, R.: Differential drag spacecraft rendezvous using an adaptive Lyapunov control strategy. Acta Astronaut. 83, 196–207 (2013)

    Google Scholar 

  50. Pérez, D., Bevilacqua, R.: Lyapunov-based adaptive feedback for spacecraft planar relative maneuvering via differential drag. J. Guid. Control Dyn. 37(5), 1678–1684 (2014)

    Google Scholar 

  51. Lambert, C., Kumar, B.S., Hamel, J.-F., Ng, A.: Implementation and performance of formation flying using differential drag. Acta Astronaut. 71, 68–82 (2012)

    Google Scholar 

  52. Dell’Elce, L., Kerschen, G.: Propellantless rendez-vous of QB-50 nanosatellites. In: 63rd International Astronautical Congress, Naples, Italy (2012)

  53. Dell’Elce, L., Kerschen, G.: Orbital rendez-vous using differential drag in the QB50 constellation. In: AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, Minnesota (2012)

  54. Twiggs, R., Malphrus, B., Muylaert, J.: The QB50 Program, the first CubeSat Constellation doing Science. In: 24th Annual AIAA/USU Conference on Small Satellites, Logan, Utah (2010)

  55. Dell’Elce, L., Martinusi, V., Kerschen, G.: Robust optimal rendezvous using differential drag. In: AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA, USA (2014)

  56. Dell’Elce, L., Kerschen, G.: Validation of differential drag propellantless maneuvers using 6DOF Simulations and Stochastic Dynamics. In: 9th International ESA Conference on Guidance, Navigation and Control, Oporto, Portugal (2014)

  57. Dell’Elce, L., Kerschen, G.: Optimal propellantless rendez-vous using differential drag. Acta Astronaut. 109, 112–123 (2015)

    Google Scholar 

  58. Spiller, D., Curti, F.: Inverse Dynamics Particle Swarm Optimization For Nanosatellites Rendezvous via Differential Drag. In: 3rd IAA Conference on University Satellite Missions and CubeSat Workshop and International Workshop on Lean Satellite Standardization, Rome, Italy (2015)

  59. Spiller, D., Curti, F., Ansalone, L.: Inverse dynamics particle swarm optimization for spacecraft minimum-time maneuvers with constraints. In: 23rd Conference of the Italian Association of Aeronautics and Astronautics AIAA, Torino, Italy (2015)

  60. Spiller, D., Ansalone, L., Curti, F.: Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones. J. Guid. Control Dyn. 39(2), 312–325 (2015)

    Google Scholar 

  61. Mazal, L., Pérez, D., Bevilacqua, R., Curti, F.: Spacecraft rendezvous by differential drag under uncertainties. J. Guid. Control Dyn. 39(8), 1721–1733 (2016)

    Google Scholar 

  62. Cho, H., Dell’Elce, L., Kerschen, G.: Chattering-free sliding mode control for propellantless rendez-vous using differential drag. In: 6th International Conference on Astrodynamics Tools and Techniques (ICATT), Darmstadt, Germany (2016)

  63. Pérez, D., Bevilacqua, R.: Differential drag-based reference trajectories for spacecraft relative maneuvering using density forecast. J. Spacecr. Rockets 53(1), 234–239 (2016)

    Google Scholar 

  64. Guglielmo, D., Pérez, D., Bevilacqua, R., Mazal, L.: Spacecraft relative guidance via spatio-temporal resolution in atmospheric density forecasting. Acta Astronaut. 129, 32–43 (2016)

    Google Scholar 

  65. Pérez, D.: Adaptive lyapunov control and artificial neural networks for spacecraft relative maneuvering using atmospheric differential drag. Dissertation, Rensselaer Polytechnic Institute (en) (2013)

  66. Dell’Elce, L.: Satellite orbits in the atmosphere. Uncertainty quantification, propagation and optimal control. Dissertation, Université de Liège (2015)

  67. Spiller, D.: Optimal Control Problem Solved via Swarm Intelligence. Dissertation, Sapienza University of Rome (2018)

  68. Mathews, M., Leszkiewicz, S.J.: Efficient spacecraft formationkeeping with consideration of ballistic coefficient control. In: 26th Aerospace Science Meeting, Reno, NV, USA (1988)

  69. Aorpimai, M., Steyn, W., Palmer, P.: Dynamic ground-track chasing constellation using atmospheric drag. In: 4th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, 4th edn., ESTEC, Noordwijk, Netherlands (1999)

  70. Folta, D.C., Newman, L.K., Gardner, T.: Foundations of formation flying for Mission to Planet Earth and New Millennium. In: AIAA/AAS Astrodynamics Conference, San Diego, USA (1996)

  71. Fourcade, J.: Mission analysis and control of interferometric wheel formation flying. In: 18th International Symposium on Space Flight Dynamics, Munich, Germany (2004)

  72. Jigang, H., Yulin, Z.: Application of phase-plane method in the co-plane formation maintenance of formation flying satellites. In: 2006 Chinese Control Conference, pp. 1900–1904. IEEE, Harbin, China (2006)

  73. Wedekind, J.T.: Characterizing and controlling the effects of differential drag on satellite formations. Master Thesis, Air Force Institute of Technology (2006)

  74. Kumar, B.S., Ng, A., Yoshihara, K., Ruiter, A. de: Differential drag as a means of spacecraft formation control. In: 2007 IEEE Aerospace Conference. IEEE, Big Sky, MT, USA (2007)

  75. Bellefeuille, F.: Satellite formation maintenance using differential atmospheric drag. Master’s Thesis, McGill University (2011)

  76. Reid, T., Misra, A.K.: Formation flight of satellites in the presence of atmospheric drag. Journal of Aerospace Enginering, Science and Applications 3, 1 (2011)

    Google Scholar 

  77. Zeng, G., Hu, M., Yao, H.: Relative orbit estimation and formation keeping control of satellite formations in low Earth orbits. Acta Astronaut. 76, 164–175 (2012)

    Google Scholar 

  78. Kumar, K.D., Misra, A.K., Varma, S., Reid, T., Bellefeuille, F.: Maintenance of satellite formations using environmental forces. Acta Astronaut. 102, 341–354 (2014)

    Google Scholar 

  79. Ben-Yaacov, O., Ivantsov, A., Gurfil, P.: Covariance analysis of differential drag-based satellite cluster flight. Acta Astronaut. 123, 387–396 (2016)

    Google Scholar 

  80. Shouman, M.S., Atallah, A.M.: Control of high fidelity linearized model for satellite formation flight using aerodynamic drag. In: AAS/AIAA Astrodynamics Specialist Conference, Napa, California (2016)

  81. Hajovsky, B.B.: Satellite formation control using atmospheric drag. Master Thesis, Air Force Institute of Technology (2007)

  82. Varma, S.: Control of satellites using environmental forces: aerodynamic drag/solar radiation pressure. Dissertation, Ryerson University (2011)

  83. Pérez, D., Bevilacqua, R.: Spacecraft maneuvering via atmospheric differential drag using an adaptive lyapunov controler. Adv. Astronaut. Sci. 148, 3855–3874 (2013)

    Google Scholar 

  84. Bevilacqua, R.: Analytical guidance solutions for spacecraft planar rephasing via input shaping. J. Guid. Control Dyn. 37(3), 1042–1047 (2014)

    Google Scholar 

  85. Bevilacqua, R., Lovell, T.A.: Analytical guidance for spacecraft relative motion under constant thrust using relative orbit elements. Acta Astronaut. 102, 47–61 (2014)

    Google Scholar 

  86. Pastorelli, M., Bevilacqua, R., Pastorelli, S.: Differential-drag-based roto-translational control for propellant-less spacecraft. Acta Astronaut. 114, 6–21 (2015)

    Google Scholar 

  87. Spiller, D., Curti, F., Circi, C.: Minimum-time reconfiguration maneuvers of satellite formations using perturbation forces. J. Guid. Control Dyn. 40(5), 1130–1143 (2017)

    Google Scholar 

  88. Horsley, M., Nikolaev, S., Pertica, A.: Small satellite rendezvous using differential lift and drag. J. Guid. Control Dyn. 36(2), 445–453 (2013)

    Google Scholar 

  89. Shao, X., Song, M., Wang, J., Zhang, D., Chen, J.: Satellite formation keeping using differential lift and drag under J2 perturbation. Aircraft Eng Aerospace Tech 89(1), 11–19 (2017)

    Google Scholar 

  90. Sun, R., Wang, J., Zhang, D., Jia, Q., Shao, X.: Roto-translational spacecraft formation control using aerodynamic forces. J. Guid. Control Dyn. 40(10), 2556–2568 (2017)

    Google Scholar 

  91. Sun, R., Wang, J., Zhang, D., Shao, X.: Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy. Adv. Space Res. 61(3), 914–926 (2017)

    Google Scholar 

  92. Sun, R., Wang, J., Zhang, D., Shao, X.: Neural-network-based sliding-mode adaptive control for spacecraft formation using aerodynamic forces. J. Guid. Control Dyn. 41(3), 757–763 (2017)

    Google Scholar 

  93. Ivanov, D., Mogilevsky, M., Monakhova, U., Ovchinnikov, M., Chernyshov, A.: Deployment and maintenance of nanosatellite tetrahedral formation flying using aerodynamic forces. In: 69th International Astronautical Congress, Bremen, Germany (2018)

  94. Ivanov, D., Kushniruk, M., Ovchinnikov, M.: Study of satellite formation flying control using differential lift and drag. Acta Astronautica (2018)

  95. Macklay, T.D., Tuttle, C.: Satellite station keeping of the ORBCOMM constellation via active control of atmospheric drag: operations, constraints, and performance (AAS 05-152). In: Advances in the Astronautical Science, vol. 120 (2005)

  96. Walther, M.: Analysis of the feasibility range of rendezvous maneuvers using aerodynamic forces. Bachelor Thesis, University of Stuttgart (2019)

  97. Roberts, P.C.E., Crisp, N.H., Edmondson, S., Haigh, S.J., Lyons, R.E., Oiko, V.T.A., Macario Rojas, A., Smith, K.L., Becedas, J., González, G., Vázquez, I., Braña, Á., Antonini, K., Bay, K., Ghizoni, L., Jungnell, V., Morsbøl, J., Binder, T., Boxberger, A., Herdrich, G.H., Romano, F., Fasoulas, S., Garcia-Almiñana, D., Rodriguez-Donaire, S., Kataria, D., Davidson, M., Outlaw, R., Belkouchi, B., Conte, A., Perez, J.S., Villain, R., Heißerer, B., Schwalber, A.: DISCOVERER—radical redesign of earth observation satellites for suistained operation at significantly lower altitudes. In: 68th International Astronautical Congress, Adelaide, Australia (2017)

  98. Virgili-Llop, J., Roberts, P.C.E., Hao, Z., Ramio, L., Beauplet, V.: Very low earth orbit mission concepts for earth observation. Benefits and challenges. In: Reinventing Space Conference, London, UK (2014)

  99. Romano, F., Massuti-Ballester, B., Binder, T., Herdrich, G., Fasoulas, S., Schönherr, T.: System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster. Acta Astronaut. 147, 114–126 (2018)

    Google Scholar 

  100. Schaaf, S.A., Chambre, P.L.: Flow of rarefied gases. Princeton University Press, Princeton (1958)

  101. Moe, K., Moe, M.M.: Gas–surface interactions and satellite drag coefficients. Planet. Space Sci. 53(8), 793–801 (2005)

    Google Scholar 

  102. Sentman, L.H.: Free molecule flow theory and its application to the determination of aerodynamic forces. Technical Report, Lockheed Aircraft Corporation (1961)

  103. Moe, K., Moe, M.M.: Gas-surface interactions in low-earth orbit. In: 27th International Symposium on Rarefied Gas Dynamics, pp. 1313–1318, Pacific Grove, California, USA (2010)

  104. Maxwell, J.C.: VII. On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lon 170, 231–256 (1879)

  105. Pilinski, M.D., Argrow, B.M., Palo, S.E.: Semiempirical Model for Satellite Energy-Accommodation Coefficients. J. Spacecr. Rockets 47(6), 951–956 (2010)

    Google Scholar 

  106. Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows. Oxford engineering science series, vol. 42. Clarendon Press, Oxford (eng) (2003)

  107. Virgili-Llop, J., Roberts, P.C.E., Palmer, K., Hobbs, S., Kingston, J.: Descending sun-synchronous orbits with aerodynamic inclination correction. J. Guid. Control Dyn. 38(5), 831–842 (2015)

    Google Scholar 

  108. Stambler, A.H., Inoshita, K.E., Roberts, L.M., Barbagallo, C.E., Groh, K.K. de, Banks, B.A., Kleiman, J.I.: Ground-laboratory to in-space atomic oxygen correlation for the PEACE polymers. In: AIP Conference Proceedings, pp. 51–66. AIP (2009)

  109. Roberts, G.T., Chambers, A.R., White, C.B., Kleiman, J.I.: LEO Atomic oxygen measurements. Experiment design and preliminary results. In: AIP Conference Proceedings, pp. 419–425, AIP (2009)

  110. Banks, B.A., Groh, K.K. de, Miller, S.K., Waters, D.L., Kleiman, J.I.: Lessons learned from atomic oxygen interaction with spacecraft materials in low earth orbit. In: AIP Conference Proceedings, pp. 312–325, AIP (2009)

  111. Banks, B.A., de Groh, K.K., Miller, S.K.: Low earth orbital atomic oxygen interactions with spacecraft materials. MRS Proc. 851, 103 (2004)

    Google Scholar 

  112. Oiko, V.T.A., Roberts, P.C.E., Edmondson, S., Worrall, S.D., Kataria, D., Outlaw, R., Haigh, S.J., Smith, K., Crisp, N.H., Lyons, R.E., Livadiotti, S., Huyton, C., Sinpertru, L.A., Becedas, J., González, G., Domínguez, R.M., González, D., Ghizoni, L., Jungnell, V., Bay, K., Morsbøl, J., Herdrich, G.H., Romano, F., Binder, T., Boxberger, A., Fasoulas, S., Traub, C., Garcia-Almiñana, D., Rodriguez-Donaire, S., Sureda, M., Villain, R., Perez, J.S., Conte, A., Belkuche, B., Schwalber, A., Heißerer, B.: Design and development of a hyperthermal atomic oxygen wind tunnel facility. In: 14th International Symposium on Materials in the Space Environment, Biarritz, France (2018)

  113. Crisp, N.H., Roberts, P.C.E., Edmondson, S., Haigh, S.J., Huyton, C., Livadiotti, S., Oiko, V.T.A., Smith, K.L., Worrall, S.D., Becedas, J., González, G., Domínguez, R., Bay, K., Ghizoni, L., Jungnell, V., Morsbøl, J., Binder, T., Boxberger, A., Fasoulas, S., Herdrich, G.H., Romano, F., Traub, C., Garcia-Almiñana, D., Rodriguez-Donaire, S., Sureda, M., Kataria, D., Outlaw, R., Belkouchi, B., Conte, A., Perez, J.S., Villain, R., Heißerer, B., Schwalber, A.: SOAR—Satellite for orbital aerodynamics research. In: 69th International Astronautical Congress, Bremen, Germany (2018)

  114. Pérez, D., Wohlberg, B., Lovell, T.A., Shoemaker, M., Bevilacqua, R.: Orbit-centered atmospheric density prediction using artificial neural networks. Acta Astronaut. 98, 9–23 (2014)

    Google Scholar 

  115. Pérez, D., Bevilacqua, R.: Neural network based calibration of atmospheric density models. Acta Astronaut. 110, 58–76 (2015)

    Google Scholar 

  116. Stastny, N.B., Chavez, F.R., Lin, C.: Localized density drag prediction for improved onboard orbit propagation (2009). http://www.dtic.mil/dtic/tr/fulltext/u2/a531881.pdf

  117. Guglielmo, D.: Spatio-Temporal Atmospheric Density Forecasting for Drag-Based Propellant-Less Spacecraft Maneuvering: Theory and Mission Design. Dissertation, University of Florida (2015)

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 737183. This reflects only the author’s view and the European Commission is not responsible for any use that may be made of the information it contains. The author would like to thank the reviewers, the DISCOVERER team as well as several colleagues from IRS for their valuable feedback and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Traub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traub, C., Romano, F., Binder, T. et al. On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight. CEAS Space J 12, 15–32 (2020). https://doi.org/10.1007/s12567-019-00254-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-019-00254-y

Keywords

Navigation