On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight

  • C. TraubEmail author
  • F. Romano
  • T. Binder
  • A. Boxberger
  • G. H. Herdrich
  • S. Fasoulas
  • P. C. E. Roberts
  • K. Smith
  • S. Edmondson
  • S. Haigh
  • N. H. Crisp
  • V. T. A. Oiko
  • R. Lyons
  • S. D. Worrall
  • S. Livadiotti
  • J. Becedas
  • G. González
  • R. M. Dominguez
  • D. González
  • L. Ghizoni
  • V. Jungnell
  • K. Bay
  • J. Morsbøl
  • D. Garcia-Almiñana
  • S. Rodriguez-Donaire
  • M. Sureda
  • D. Kataria
  • R. Outlaw
  • R. Villain
  • J. S. Perez
  • A. Conte
  • B. Belkouchi
  • A. Schwalber
  • B. Heißerer
Original Paper


For a satellite formation to maintain its intended design despite present perturbations (formation keeping), to change the formation design (reconfiguration) or to perform a rendezvous maneuver, control forces need to be generated. To do so, chemical and/or electric thrusters are currently the methods of choice. However, their utilization has detrimental effects on small satellites’ limited mass, volume and power budgets. Since the mid-80s, the potential of using differential drag as a means of propellant-less source of control for satellite formation flight is actively researched. This method consists of varying the aerodynamic drag experienced by different spacecraft, thus generating differential accelerations between them. Its main disadvantage, that its controllability is mainly limited to the in-plain relative motion, can be overcome using differential lift as a means to control the out-of-plane motion. Due to its promising benefits, a variety of studies from researchers around the world have enhanced the state-of-the-art over the past decades which results in a multitude of available literature. In this paper, an extensive literature review of the efforts which led to the current state-of-the-art of different lift and drag-based satellite formation control is presented. Based on the insights gained during the review process, key knowledge gaps that need to be addressed in the field of differential lift to enhance the current state-of-the-art are revealed and discussed. In closer detail, the interdependence between the feasibility domain/the maneuver time and increased differential lift forces achieved using advanced satellite surface materials promoting quasi-specular or specular reflection, as currently being developed in the course of the DISCOVERER project, is discussed.


Satellite aerodynamics Differential lift Differential drag Formation flight control Propellant-less control 



This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 737183. This reflects only the author’s view and the European Commission is not responsible for any use that may be made of the information it contains. The author would like to thank the reviewers, the DISCOVERER team as well as several colleagues from IRS for their valuable feedback and suggestions.


  1. 1.
    Kristiansen, R., Nicklasson, P.J.: Spacecraft formation flying. A review and new results on state feedback control. Acta Astronaut. 65((11–12)), 1537–1552 (2009)CrossRefGoogle Scholar
  2. 2.
    Bandyopadhyay, S., Subramanian, G.P., Foust, R., Morgan, D., Chung, S.-J., Hadaegh, F.Y.: A review of impending small satellite formation flying missions. In: 53rd AIAA aerospace sciences meeting, Kissimmee, Florida, USA (2015)Google Scholar
  3. 3.
    Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: A survey of spacecraft formation flying guidance and control (part I): Guidance. Guidance. In: Proceedings of the 2003 American Control Conference. ACC, June 4–6, 2003, the Adams Mark Hotel, Denver, Colorado, USA, pp. 1733–1739. IEEE, Denver, Colorado, USA (2003)Google Scholar
  4. 4.
    Yeh, H.-H., Sparks, A.: Geometry and control of satellite formations. In: Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), 384-388 vol.1. IEEE, Chicago, IL, USA (2000)Google Scholar
  5. 5.
    Hill, G.W.: Researches in the Lunar theory. Am. J. Math. 1(1), 5 (1878)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clohessy, W.H., Wiltshire, R.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27(9), 653–658 (1960)CrossRefzbMATHGoogle Scholar
  7. 7.
    Vallado, D.A., McClain, W.D.: Fundamentals of astrodynamics and applications, 4th edn. Space Technology Library. Published by Microcosm Press, Hawthorne (2013)Google Scholar
  8. 8.
    Schaub, H., Alfriend, K.T.: J2 Invariant relative orbits for spacecraft formations. Celest. Mech. Dyn. Astr. 79(2), 77–95 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Crisp, N.H., Smith, K., Hollingsworth, P.: Launch and deployment of distributed small satellite systems. Acta Astronaut. 114, 65–78 (2015)CrossRefGoogle Scholar
  10. 10.
    Williams, T., Wang, Z.-S.: Uses of solar radiation pressure for satellite formation flight. Int. J. Robust Nonlinear Control 12(2–3), 163–183 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Tsujii, S., Bando, M., Yamakawa, H.: Spacecraft formation flying dynamics and control using the geomagnetic lorentz force. J. Guid. Control Dyn. 36(1), 136–148 (2013)CrossRefGoogle Scholar
  12. 12.
    Peck, M.A., Streetman, B., Saaj, C.M., Lappas, V.: Spacecraft formation flying using lorentz forces. J. Br. Interplanet. Soc. 60, 263–267 (2007)Google Scholar
  13. 13.
    Schaub, H., Parker, G.G., King, L.B.: Challenges and prospects of coulomb spacecraft formations. Adv. Astronaut. Sci. 115, 1 (2003)Google Scholar
  14. 14.
    King, L., Parker, G., Deshmukh, S., Chong, J.: Spacecraft formation-flying using inter-vehicle coulomb forces. Final Report for Phase I Research Sponsored by NIAC—NASA Institute for Advanced Concepts. Michigan Technological University (2002)Google Scholar
  15. 15.
    Walberg, G.D.: A survey of aeroassisted orbit transfer. J. Spacecr. Rockets 22(1), 3–18 (1985)CrossRefGoogle Scholar
  16. 16.
    Blitzer, L.: Satellite orbit paradoxon a general view. Am. J. Phys. 39(1971), 887 (1971)Google Scholar
  17. 17.
    Leonard, C.L.: Formation keeping of Spacecraft via Differential Drag. Master Thesis, Massachusetts Institute of Techology (1986)Google Scholar
  18. 18.
    Mason, C., Tilton, G., Vazirani, N., Spinazola, J., Guglielmo, D., Robinson, S., Bevilacqua, R., Samuel, J.: Origami-based drag sail for cubesat propellant-free maneuvering. In: 5th Nano-Satellite Symposium, Tokyo, Japan (2013)Google Scholar
  19. 19.
    Ben-Yaacov, O., Gurfil, P.: Stability and performance of orbital elements feedback for cluster keeping using differential drag. J. Astronaut. Sci. 61(2), 198–226 (2014)CrossRefGoogle Scholar
  20. 20.
    Horsley, M.: An investigation into using differential drag for controlling a formation of cubesats. In: Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, United States (2011)Google Scholar
  21. 21.
    Doornbos, E.: Thermospheric density and wind determination from satellite dynamics. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Ching, B.K., Hickman, D.R., Straus, J.M.: Effects of atmospheric winds and aerodynnamic lift on the inclination of the orbit of the S3-1 satellite. Interim Report, Space and Missle Systems Organization Air Force System Command (1976)Google Scholar
  23. 23.
    Moore, P.: The effect of aerodynamic lift on near-circular satellite orbits. Planet. Space Sci. 33(5), 479–491 (1985)CrossRefGoogle Scholar
  24. 24.
    Schweighart, S.: Development and analysis of a high fidelity linearized J2 model for satellite formation flying. Master’s Thesis, Massachusetts Institute of Techology (2001)Google Scholar
  25. 25.
    Schweighart, S.A., Sedwick, R.J.: High-fidelity linearized J2 model for satellite formation flight. J. Guid. Control Dyn. 25(6), 1073–1080 (2002)CrossRefGoogle Scholar
  26. 26.
    Shao, X., Song, M., Zhang, D., Sun, R.: Satellite rendezvous using differential aerodynamic forces under J2 perturbation. Aircraft Eng Aerosp Tech 87(5), 427–436 (2015)CrossRefGoogle Scholar
  27. 27.
    Smith, B., Boyce, R., Brown, L., Garratt, M.: Investigation into the practicability of differential lift-based spacecraft rendezvous. J. Guid. Control Dyn. 40(10), 2682–2689 (2017)CrossRefGoogle Scholar
  28. 28.
    Patera, R.: Drag modulation as a means of mitigating casualty risk for random reentry. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit. American Institute of Aeronautics and Astronautics, San Francisco, California (2005)Google Scholar
  29. 29.
    Alemán, S.: Satellite reentry control via surface area amplification. Master Thesis, Air Force Institute of Technology (2009)Google Scholar
  30. 30.
    Virgili-Llop, J., Roberts, P.C.E., Hara, N.C.: Atmospheric interface reentry point targeting using aerodynamic drag control. J. Guid. Control Dyn. 38(3), 403–413 (2015)CrossRefGoogle Scholar
  31. 31.
    Omar, S.R., Bevilacqua, R.: Spacecraft de-orbit point targeting using aerodynamic drag. In: AIAA Guidance, Navigation, and Control Conference. American Institute of Aeronautics and Astronautics, Grapevine, Texas (2017)Google Scholar
  32. 32.
    Omar, S.R., Bevilacqua, R., Guglielmo, D., Fineberg, L., Treptow, J., Clark, S., Johnson, Y.: Spacecraft deorbit point targeting using aerodynamic drag. J. Guid. Control Dyn. 40(10), 2646–2652 (2017)CrossRefGoogle Scholar
  33. 33.
    Varma, S., Kumar, K.D.: Satellite formation flying using differential aerodynamic drag. In: Proceedings of the 20th AAS/AIAA Space Flight Mechanics Meeting—AAS10-11, San Diego, CA (2010)Google Scholar
  34. 34.
    Varma, S., Kumar, K.D.: Satellite formation flying using solar radiation pressure and/or aerodynamic drag. In: Proceedings of the 12th International Space Conference of Pacific-basin Societies (ISCOPS), Montreal, Quebec, Canada (2010)Google Scholar
  35. 35.
    Varma, S., Kumar, K.D.: Multiple satellite formation flying using differential aerodynamic drag. J. Spacecr Rockets 49(2), 325–336 (2012)CrossRefGoogle Scholar
  36. 36.
    Harris, M.W., Açıkmeşe, B.: Minimum time rendezvous of multiple spacecraft using differential drag. J. Guid. Control Dyn. 37(2), 365–373 (2014)CrossRefGoogle Scholar
  37. 37.
    Chesi, S., Gong, Q., Romano, M.: Aerodynamic three-axis attitude stabilization of a spacecraft by center-of-mass shifting. J. Guid. Control Dyn. 40(7), 1613–1626 (2017)CrossRefGoogle Scholar
  38. 38.
    Mishne, D., Edlerman, E.: Collision-avoidance maneuver of satellites using drag and solar radiation pressure. J. Guid. Control Dyn. 40(5), 1191–1205 (2017)CrossRefGoogle Scholar
  39. 39.
    Leonard, C.L., Hollister, W., Bergmann, E.: Orbital formation keeping with differential drag. J. Guid. Control Dyn. 12(1), 108–113 (1987)CrossRefGoogle Scholar
  40. 40.
    Palmerini, G.B., Sgubini, S., Taini, G.: Spacecraft orbit control using air drag. In: 56th International Astronautical Congress, Fukuoka, Japan (2005)Google Scholar
  41. 41.
    Carter, T., Humi, M.: Clohessy-Wiltshire equations modified to include quadratic drag. J. Guid. Control Dyn. 25(6), 1058–1063 (2002)CrossRefGoogle Scholar
  42. 42.
    Kumar, B.S., Ng, A.: A bang-bang control approach to maneuver spacecraft in a formation with differential drag. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii (2008)Google Scholar
  43. 43.
    Bevilacqua, R., Romano, M.: Rendezvous Maneuvers of multiple spacecraft using differential drag under J2 perturbation. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii (2008)Google Scholar
  44. 44.
    Bevilacqua, R., Romano, M.: Rendezvous maneuvers of multiple spacecraft using differential drag under J2 perturbation. J. Guid. Control Dyn. 31(6), 1595–1607 (2008)CrossRefGoogle Scholar
  45. 45.
    Bevilacqua, R., Hall, J.S., Romano, M.: Multiple spacecraft rendezvous maneuvers by differential drag and low thrust engines. Celest. Mech. Dyn. Astron. 106(1), 69–88 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Pérez, D., Bevilacqua, R.: Feedback Control of Spacecraft Rendezvous Maneuvers using Differential Drag (2011).
  47. 47.
    Pérez, D., Bevilacqua, R.: Lyapunov-based spacecraft rendezvous maneuvers using differential drag. In: AIAA Guidance, Navigation, and Control Conference, Portland, Oregon (2011)Google Scholar
  48. 48.
    Curti, F., Romano, M., Bevilacqua, R.: Lyapunov-Based thrusters’ selection for spacecraft control. Analysis and experimentation. J. Guid. Control Dyn. 33(4), 1143–1160 (2010)CrossRefGoogle Scholar
  49. 49.
    Pérez, D., Bevilacqua, R.: Differential drag spacecraft rendezvous using an adaptive Lyapunov control strategy. Acta Astronaut. 83, 196–207 (2013)CrossRefGoogle Scholar
  50. 50.
    Pérez, D., Bevilacqua, R.: Lyapunov-based adaptive feedback for spacecraft planar relative maneuvering via differential drag. J. Guid. Control Dyn. 37(5), 1678–1684 (2014)CrossRefGoogle Scholar
  51. 51.
    Lambert, C., Kumar, B.S., Hamel, J.-F., Ng, A.: Implementation and performance of formation flying using differential drag. Acta Astronaut. 71, 68–82 (2012)CrossRefGoogle Scholar
  52. 52.
    Dell’Elce, L., Kerschen, G.: Propellantless rendez-vous of QB-50 nanosatellites. In: 63rd International Astronautical Congress, Naples, Italy (2012)Google Scholar
  53. 53.
    Dell’Elce, L., Kerschen, G.: Orbital rendez-vous using differential drag in the QB50 constellation. In: AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, Minnesota (2012)Google Scholar
  54. 54.
    Twiggs, R., Malphrus, B., Muylaert, J.: The QB50 Program, the first CubeSat Constellation doing Science. In: 24th Annual AIAA/USU Conference on Small Satellites, Logan, Utah (2010)Google Scholar
  55. 55.
    Dell’Elce, L., Martinusi, V., Kerschen, G.: Robust optimal rendezvous using differential drag. In: AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA, USA (2014)Google Scholar
  56. 56.
    Dell’Elce, L., Kerschen, G.: Validation of differential drag propellantless maneuvers using 6DOF Simulations and Stochastic Dynamics. In: 9th International ESA Conference on Guidance, Navigation and Control, Oporto, Portugal (2014)Google Scholar
  57. 57.
    Dell’Elce, L., Kerschen, G.: Optimal propellantless rendez-vous using differential drag. Acta Astronaut. 109, 112–123 (2015)CrossRefGoogle Scholar
  58. 58.
    Spiller, D., Curti, F.: Inverse Dynamics Particle Swarm Optimization For Nanosatellites Rendezvous via Differential Drag. In: 3rd IAA Conference on University Satellite Missions and CubeSat Workshop and International Workshop on Lean Satellite Standardization, Rome, Italy (2015)Google Scholar
  59. 59.
    Spiller, D., Curti, F., Ansalone, L.: Inverse dynamics particle swarm optimization for spacecraft minimum-time maneuvers with constraints. In: 23rd Conference of the Italian Association of Aeronautics and Astronautics AIAA, Torino, Italy (2015)Google Scholar
  60. 60.
    Spiller, D., Ansalone, L., Curti, F.: Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones. J. Guid. Control Dyn. 39(2), 312–325 (2015)CrossRefGoogle Scholar
  61. 61.
    Mazal, L., Pérez, D., Bevilacqua, R., Curti, F.: Spacecraft rendezvous by differential drag under uncertainties. J. Guid. Control Dyn. 39(8), 1721–1733 (2016)CrossRefGoogle Scholar
  62. 62.
    Cho, H., Dell’Elce, L., Kerschen, G.: Chattering-free sliding mode control for propellantless rendez-vous using differential drag. In: 6th International Conference on Astrodynamics Tools and Techniques (ICATT), Darmstadt, Germany (2016)Google Scholar
  63. 63.
    Pérez, D., Bevilacqua, R.: Differential drag-based reference trajectories for spacecraft relative maneuvering using density forecast. J. Spacecr. Rockets 53(1), 234–239 (2016)CrossRefGoogle Scholar
  64. 64.
    Guglielmo, D., Pérez, D., Bevilacqua, R., Mazal, L.: Spacecraft relative guidance via spatio-temporal resolution in atmospheric density forecasting. Acta Astronaut. 129, 32–43 (2016)CrossRefGoogle Scholar
  65. 65.
    Pérez, D.: Adaptive lyapunov control and artificial neural networks for spacecraft relative maneuvering using atmospheric differential drag. Dissertation, Rensselaer Polytechnic Institute (en) (2013)Google Scholar
  66. 66.
    Dell’Elce, L.: Satellite orbits in the atmosphere. Uncertainty quantification, propagation and optimal control. Dissertation, Université de Liège (2015)Google Scholar
  67. 67.
    Spiller, D.: Optimal Control Problem Solved via Swarm Intelligence. Dissertation, Sapienza University of Rome (2018)Google Scholar
  68. 68.
    Mathews, M., Leszkiewicz, S.J.: Efficient spacecraft formationkeeping with consideration of ballistic coefficient control. In: 26th Aerospace Science Meeting, Reno, NV, USA (1988)Google Scholar
  69. 69.
    Aorpimai, M., Steyn, W., Palmer, P.: Dynamic ground-track chasing constellation using atmospheric drag. In: 4th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, 4th edn., ESTEC, Noordwijk, Netherlands (1999)Google Scholar
  70. 70.
    Folta, D.C., Newman, L.K., Gardner, T.: Foundations of formation flying for Mission to Planet Earth and New Millennium. In: AIAA/AAS Astrodynamics Conference, San Diego, USA (1996)Google Scholar
  71. 71.
    Fourcade, J.: Mission analysis and control of interferometric wheel formation flying. In: 18th International Symposium on Space Flight Dynamics, Munich, Germany (2004)Google Scholar
  72. 72.
    Jigang, H., Yulin, Z.: Application of phase-plane method in the co-plane formation maintenance of formation flying satellites. In: 2006 Chinese Control Conference, pp. 1900–1904. IEEE, Harbin, China (2006)Google Scholar
  73. 73.
    Wedekind, J.T.: Characterizing and controlling the effects of differential drag on satellite formations. Master Thesis, Air Force Institute of Technology (2006)Google Scholar
  74. 74.
    Kumar, B.S., Ng, A., Yoshihara, K., Ruiter, A. de: Differential drag as a means of spacecraft formation control. In: 2007 IEEE Aerospace Conference. IEEE, Big Sky, MT, USA (2007)Google Scholar
  75. 75.
    Bellefeuille, F.: Satellite formation maintenance using differential atmospheric drag. Master’s Thesis, McGill University (2011)Google Scholar
  76. 76.
    Reid, T., Misra, A.K.: Formation flight of satellites in the presence of atmospheric drag. Journal of Aerospace Enginering, Science and Applications 3, 1 (2011)Google Scholar
  77. 77.
    Zeng, G., Hu, M., Yao, H.: Relative orbit estimation and formation keeping control of satellite formations in low Earth orbits. Acta Astronaut. 76, 164–175 (2012)CrossRefGoogle Scholar
  78. 78.
    Kumar, K.D., Misra, A.K., Varma, S., Reid, T., Bellefeuille, F.: Maintenance of satellite formations using environmental forces. Acta Astronaut. 102, 341–354 (2014)CrossRefGoogle Scholar
  79. 79.
    Ben-Yaacov, O., Ivantsov, A., Gurfil, P.: Covariance analysis of differential drag-based satellite cluster flight. Acta Astronaut. 123, 387–396 (2016)CrossRefGoogle Scholar
  80. 80.
    Shouman, M.S., Atallah, A.M.: Control of high fidelity linearized model for satellite formation flight using aerodynamic drag. In: AAS/AIAA Astrodynamics Specialist Conference, Napa, California (2016)Google Scholar
  81. 81.
    Hajovsky, B.B.: Satellite formation control using atmospheric drag. Master Thesis, Air Force Institute of Technology (2007)Google Scholar
  82. 82.
    Varma, S.: Control of satellites using environmental forces: aerodynamic drag/solar radiation pressure. Dissertation, Ryerson University (2011)Google Scholar
  83. 83.
    Pérez, D., Bevilacqua, R.: Spacecraft maneuvering via atmospheric differential drag using an adaptive lyapunov controler. Adv. Astronaut. Sci. 148, 3855–3874 (2013)Google Scholar
  84. 84.
    Bevilacqua, R.: Analytical guidance solutions for spacecraft planar rephasing via input shaping. J. Guid. Control Dyn. 37(3), 1042–1047 (2014)CrossRefGoogle Scholar
  85. 85.
    Bevilacqua, R., Lovell, T.A.: Analytical guidance for spacecraft relative motion under constant thrust using relative orbit elements. Acta Astronaut. 102, 47–61 (2014)CrossRefGoogle Scholar
  86. 86.
    Pastorelli, M., Bevilacqua, R., Pastorelli, S.: Differential-drag-based roto-translational control for propellant-less spacecraft. Acta Astronaut. 114, 6–21 (2015)CrossRefGoogle Scholar
  87. 87.
    Spiller, D., Curti, F., Circi, C.: Minimum-time reconfiguration maneuvers of satellite formations using perturbation forces. J. Guid. Control Dyn. 40(5), 1130–1143 (2017)CrossRefGoogle Scholar
  88. 88.
    Horsley, M., Nikolaev, S., Pertica, A.: Small satellite rendezvous using differential lift and drag. J. Guid. Control Dyn. 36(2), 445–453 (2013)CrossRefGoogle Scholar
  89. 89.
    Shao, X., Song, M., Wang, J., Zhang, D., Chen, J.: Satellite formation keeping using differential lift and drag under J2 perturbation. Aircraft Eng Aerospace Tech 89(1), 11–19 (2017)CrossRefGoogle Scholar
  90. 90.
    Sun, R., Wang, J., Zhang, D., Jia, Q., Shao, X.: Roto-translational spacecraft formation control using aerodynamic forces. J. Guid. Control Dyn. 40(10), 2556–2568 (2017)CrossRefGoogle Scholar
  91. 91.
    Sun, R., Wang, J., Zhang, D., Shao, X.: Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy. Adv. Space Res. 61(3), 914–926 (2017)CrossRefGoogle Scholar
  92. 92.
    Sun, R., Wang, J., Zhang, D., Shao, X.: Neural-network-based sliding-mode adaptive control for spacecraft formation using aerodynamic forces. J. Guid. Control Dyn. 41(3), 757–763 (2017)CrossRefGoogle Scholar
  93. 93.
    Ivanov, D., Mogilevsky, M., Monakhova, U., Ovchinnikov, M., Chernyshov, A.: Deployment and maintenance of nanosatellite tetrahedral formation flying using aerodynamic forces. In: 69th International Astronautical Congress, Bremen, Germany (2018)Google Scholar
  94. 94.
    Ivanov, D., Kushniruk, M., Ovchinnikov, M.: Study of satellite formation flying control using differential lift and drag. Acta Astronautica (2018)Google Scholar
  95. 95.
    Macklay, T.D., Tuttle, C.: Satellite station keeping of the ORBCOMM constellation via active control of atmospheric drag: operations, constraints, and performance (AAS 05-152). In: Advances in the Astronautical Science, vol. 120 (2005)Google Scholar
  96. 96.
    Walther, M.: Analysis of the feasibility range of rendezvous maneuvers using aerodynamic forces. Bachelor Thesis, University of Stuttgart (2019)Google Scholar
  97. 97.
    Roberts, P.C.E., Crisp, N.H., Edmondson, S., Haigh, S.J., Lyons, R.E., Oiko, V.T.A., Macario Rojas, A., Smith, K.L., Becedas, J., González, G., Vázquez, I., Braña, Á., Antonini, K., Bay, K., Ghizoni, L., Jungnell, V., Morsbøl, J., Binder, T., Boxberger, A., Herdrich, G.H., Romano, F., Fasoulas, S., Garcia-Almiñana, D., Rodriguez-Donaire, S., Kataria, D., Davidson, M., Outlaw, R., Belkouchi, B., Conte, A., Perez, J.S., Villain, R., Heißerer, B., Schwalber, A.: DISCOVERER—radical redesign of earth observation satellites for suistained operation at significantly lower altitudes. In: 68th International Astronautical Congress, Adelaide, Australia (2017)Google Scholar
  98. 98.
    Virgili-Llop, J., Roberts, P.C.E., Hao, Z., Ramio, L., Beauplet, V.: Very low earth orbit mission concepts for earth observation. Benefits and challenges. In: Reinventing Space Conference, London, UK (2014)Google Scholar
  99. 99.
    Romano, F., Massuti-Ballester, B., Binder, T., Herdrich, G., Fasoulas, S., Schönherr, T.: System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster. Acta Astronaut. 147, 114–126 (2018)CrossRefGoogle Scholar
  100. 100.
    Schaaf, S.A., Chambre, P.L.: Flow of rarefied gases. Princeton University Press, Princeton (1958)Google Scholar
  101. 101.
    Moe, K., Moe, M.M.: Gas–surface interactions and satellite drag coefficients. Planet. Space Sci. 53(8), 793–801 (2005)CrossRefGoogle Scholar
  102. 102.
    Sentman, L.H.: Free molecule flow theory and its application to the determination of aerodynamic forces. Technical Report, Lockheed Aircraft Corporation (1961)Google Scholar
  103. 103.
    Moe, K., Moe, M.M.: Gas-surface interactions in low-earth orbit. In: 27th International Symposium on Rarefied Gas Dynamics, pp. 1313–1318, Pacific Grove, California, USA (2010)Google Scholar
  104. 104.
    Maxwell, J.C.: VII. On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lon 170, 231–256 (1879)Google Scholar
  105. 105.
    Pilinski, M.D., Argrow, B.M., Palo, S.E.: Semiempirical Model for Satellite Energy-Accommodation Coefficients. J. Spacecr. Rockets 47(6), 951–956 (2010)CrossRefGoogle Scholar
  106. 106.
    Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows. Oxford engineering science series, vol. 42. Clarendon Press, Oxford (eng) (2003)Google Scholar
  107. 107.
    Virgili-Llop, J., Roberts, P.C.E., Palmer, K., Hobbs, S., Kingston, J.: Descending sun-synchronous orbits with aerodynamic inclination correction. J. Guid. Control Dyn. 38(5), 831–842 (2015)CrossRefGoogle Scholar
  108. 108.
    Stambler, A.H., Inoshita, K.E., Roberts, L.M., Barbagallo, C.E., Groh, K.K. de, Banks, B.A., Kleiman, J.I.: Ground-laboratory to in-space atomic oxygen correlation for the PEACE polymers. In: AIP Conference Proceedings, pp. 51–66. AIP (2009)Google Scholar
  109. 109.
    Roberts, G.T., Chambers, A.R., White, C.B., Kleiman, J.I.: LEO Atomic oxygen measurements. Experiment design and preliminary results. In: AIP Conference Proceedings, pp. 419–425, AIP (2009)Google Scholar
  110. 110.
    Banks, B.A., Groh, K.K. de, Miller, S.K., Waters, D.L., Kleiman, J.I.: Lessons learned from atomic oxygen interaction with spacecraft materials in low earth orbit. In: AIP Conference Proceedings, pp. 312–325, AIP (2009)Google Scholar
  111. 111.
    Banks, B.A., de Groh, K.K., Miller, S.K.: Low earth orbital atomic oxygen interactions with spacecraft materials. MRS Proc. 851, 103 (2004)CrossRefGoogle Scholar
  112. 112.
    Oiko, V.T.A., Roberts, P.C.E., Edmondson, S., Worrall, S.D., Kataria, D., Outlaw, R., Haigh, S.J., Smith, K., Crisp, N.H., Lyons, R.E., Livadiotti, S., Huyton, C., Sinpertru, L.A., Becedas, J., González, G., Domínguez, R.M., González, D., Ghizoni, L., Jungnell, V., Bay, K., Morsbøl, J., Herdrich, G.H., Romano, F., Binder, T., Boxberger, A., Fasoulas, S., Traub, C., Garcia-Almiñana, D., Rodriguez-Donaire, S., Sureda, M., Villain, R., Perez, J.S., Conte, A., Belkuche, B., Schwalber, A., Heißerer, B.: Design and development of a hyperthermal atomic oxygen wind tunnel facility. In: 14th International Symposium on Materials in the Space Environment, Biarritz, France (2018)Google Scholar
  113. 113.
    Crisp, N.H., Roberts, P.C.E., Edmondson, S., Haigh, S.J., Huyton, C., Livadiotti, S., Oiko, V.T.A., Smith, K.L., Worrall, S.D., Becedas, J., González, G., Domínguez, R., Bay, K., Ghizoni, L., Jungnell, V., Morsbøl, J., Binder, T., Boxberger, A., Fasoulas, S., Herdrich, G.H., Romano, F., Traub, C., Garcia-Almiñana, D., Rodriguez-Donaire, S., Sureda, M., Kataria, D., Outlaw, R., Belkouchi, B., Conte, A., Perez, J.S., Villain, R., Heißerer, B., Schwalber, A.: SOAR—Satellite for orbital aerodynamics research. In: 69th International Astronautical Congress, Bremen, Germany (2018)Google Scholar
  114. 114.
    Pérez, D., Wohlberg, B., Lovell, T.A., Shoemaker, M., Bevilacqua, R.: Orbit-centered atmospheric density prediction using artificial neural networks. Acta Astronaut. 98, 9–23 (2014)CrossRefGoogle Scholar
  115. 115.
    Pérez, D., Bevilacqua, R.: Neural network based calibration of atmospheric density models. Acta Astronaut. 110, 58–76 (2015)CrossRefGoogle Scholar
  116. 116.
    Stastny, N.B., Chavez, F.R., Lin, C.: Localized density drag prediction for improved onboard orbit propagation (2009).
  117. 117.
    Guglielmo, D.: Spatio-Temporal Atmospheric Density Forecasting for Drag-Based Propellant-Less Spacecraft Maneuvering: Theory and Mission Design. Dissertation, University of Florida (2015)Google Scholar

Copyright information

© CEAS 2019

Authors and Affiliations

  • C. Traub
    • 1
    Email author
  • F. Romano
    • 1
  • T. Binder
    • 1
  • A. Boxberger
    • 1
  • G. H. Herdrich
    • 1
  • S. Fasoulas
    • 1
  • P. C. E. Roberts
    • 2
  • K. Smith
    • 2
  • S. Edmondson
    • 2
  • S. Haigh
    • 2
  • N. H. Crisp
    • 2
  • V. T. A. Oiko
    • 2
  • R. Lyons
    • 2
  • S. D. Worrall
    • 2
  • S. Livadiotti
    • 2
  • J. Becedas
    • 3
  • G. González
    • 3
  • R. M. Dominguez
    • 3
  • D. González
    • 3
  • L. Ghizoni
    • 4
  • V. Jungnell
    • 4
  • K. Bay
    • 4
  • J. Morsbøl
    • 4
  • D. Garcia-Almiñana
    • 5
  • S. Rodriguez-Donaire
    • 5
  • M. Sureda
    • 5
  • D. Kataria
    • 6
  • R. Outlaw
    • 7
  • R. Villain
    • 8
  • J. S. Perez
    • 8
  • A. Conte
    • 8
  • B. Belkouchi
    • 8
  • A. Schwalber
    • 9
  • B. Heißerer
    • 9
  1. 1.Institute of Space Systems (IRS), University of StuttgartStuttgartGermany
  2. 2.The University of ManchesterManchesterUK
  3. 3.Elecnor Deimos Satellite SystemsPuertollanoSpain
  4. 4.GomSpace ASAalborgDenmark
  5. 5.UPC-BarcelonaTECHTerrassaSpain
  6. 6.Mullard Space Science LaboratoryUniversity College LondonDorkingUK
  7. 7.Cristopher Newport UniversityNewport NewsUSA
  8. 8.EuroconsultParisFrance
  9. 9.Concentris Research Management GmbHFürstenfeldbruckGermany

Personalised recommendations