Skip to main content

Advertisement

Log in

Generic framework for vessel detection and tracking based on distributed marine radar image data

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Situation awareness is understood as a key requirement for safe and secure shipping at sea. The primary sensor for maritime situation assessment is still the radar, with the AIS being introduced as supplemental service only. In this article, we present a framework to assess the current situation picture based on marine radar image processing. Essentially, the framework comprises a centralized IMM–JPDA multi-target tracker in combination with a fully automated scheme for track management, i.e., target acquisition and track depletion. This tracker is conditioned on measurements extracted from radar images. To gain a more robust and complete situation picture, we are exploiting the aspect angle diversity of multiple marine radars, by fusing them a priori to the tracking process. Due to the generic structure of the proposed framework, different techniques for radar image processing can be implemented and compared, namely the BLOB detector and SExtractor. The overall framework performance in terms of multi-target state estimation will be compared for both methods based on a dedicated measurement campaign in the Baltic Sea with multiple static and mobile targets given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. OpenCV 3.1.0: https://github.com/Itseez/opencv.git.

References

  1. Bar-Shalom, Y., Li, X.R.: Multitarget-Multisensor Tracking: Principles and Techniques. Yaakov Bar-Shalom, Romania (1995)

    Google Scholar 

  2. Bar-Shalom, Y., Daum, F., Huang, J.: The probabilistic data association filter. IEEE Control Syst. Mag. 29, 82–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertin, E., Arnouts, S.: SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996). https://doi.org/10.1051/aas:1996164

    Article  Google Scholar 

  4. Bhattacharyya, A.: On a measure of divergence between two multinomial populations. Sankhy 7(4), 401–406 (1946)

    MathSciNet  MATH  Google Scholar 

  5. Blom, H.A.P., Bar-Shalom, Y.: The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Autom. Control. 33, 780–783 (1988)

    Article  MATH  Google Scholar 

  6. Blom, H.A.P., Bloem, E.A.: Combining IMM and JPDA for tracking multiple maneuvering targets in clutter. In: Proceedings of the Fifth International Conference on Information Fusion, 2002, vol. 1, pp. 705–712 (2002). https://doi.org/10.1109/ICIF.2002.1021224

  7. Braca, P., Vespe, M., Maresca, S., Horstmann, J.: A novel approach to high frequency radar ship tracking exploiting aspect diversity. In: 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 6895–6898 (2012)

  8. Briggs, J.: Target Detection by Marine. Radar Electromagnetics and Radar Series. Institution of Engineering and Technology, London (2004)

    Book  Google Scholar 

  9. Burmeister, H.C.: Autonomous Navigation Results from the Munin Testbed. Autonomous Ship Technology Symposium, Amsterdam (2016)

    Google Scholar 

  10. Byun, S.H., Lee, H.J., Yoon, H.K., Gong, D.S., Lee, C.M., Kang, C.G.: Implementation of multi-vessel tracking algorithm using multiple marine radar systems. In: OCEANS ’04. MTTS/IEEE Techno-ocean ’04, vol. 4, pp. 2242–2248 (2004). https://doi.org/10.1109/OCEANS.2004.1406498

  11. Coraluppi, S., Carthel, C., Wu, C., Stevens, M., Douglas, J., Titi, G., Luettgen, M.: Distributed MHT with active and passive sensors. In: 2015 18th International Conference on Information Fusion (Fusion), pp. 2065–2072 (2015)

  12. Da Costa, G.S.: Basic photometry techniques. In: Howell, S.B. (ed.) Astronomical CCD Observing and Reduction Techniques, Astronomical Society of the Pacific Conference Series, vol. 23. ASP, San Francisco p. 90 (1992)

  13. Drummond, O.E., Blackman, S.S.: Challenges of developing algorithms for multiple sensor, multiple target tracking. Proc. SPIE Signal Data Process. Small Targets 1096, 244–257 (1989). https://doi.org/10.1117/12.960358

    Google Scholar 

  14. Fortmann, T., Bar-Shalom, Y., Scheffe, M.: Sonar tracking of multiple targets using joint probabilistic data association. IEEE J. Ocean. Eng. 8(3), 173–184 (1983). https://doi.org/10.1109/JOE.1983.1145560

    Article  Google Scholar 

  15. Glass, J.D., Blair, W.D., Bar-Shalom, Y.: IMM estimators with unbiased mixing for tracking targets performing coordinated turns. In: Proceedings IEEE Aerospace Conference (2013)

  16. Guerriero, M., Willett, P., Coraluppi, S., Carthel, C.: Radar/AIS data fusion and SAR tasking for maritime surveillance. In: International Conference on Information Fusion, vol. 11 (2008)

  17. Han, KTM, Uyyanonvara, B.: A survey of blob detection algorithms for biomedical images. In: 2016 7th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), pp. 57–60 (2016). https://doi.org/10.1109/ICTEmSys.2016.7467122

  18. Heymann, F., Banyś, P., Noack, T.: A pilot study of the advantage of radar image data over ARPA based position and bearing. In: European Navigation Conference 2014 (2014)

  19. International Maritime Organization (IMO) (1974) International Convention for the Safety of Life at Sea (SOLAS)

  20. Isard, M., MacCormick, J.: BraMBLe: a Bayesian multiple-blob tracker. Eighth IEEE Int. Conf. Comput. Vis. 2, 34–41 (2001)

    Article  Google Scholar 

  21. Julier, S.J., Uhlmann, J.K.: A new extension of the Kalman filter to nonlinear systems. In: Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls., pp. 182–193 (1997)

  22. Kalman, R.E.: A new approach to linear filtering and prediction problem. Trans. ASME 82, 3445 (1960)

    Google Scholar 

  23. Kazimierski, W., Stateczny, A.: Radar and automatic identification system track fusion in an electronic chart display and information system. J. Navig. 68(68), 1141–1154 (2015)

    Article  Google Scholar 

  24. Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the state-of-the-art. Inf. Fusion 14(1), 28–44 (2013). https://doi.org/10.1016/j.inffus.2011.08.001

    Article  Google Scholar 

  25. Kim, C., Li, F., Ciptadi, A., Rehg, J.M.: Multiple hypothesis tracking revisited. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4696–4704 (2015). https://doi.org/10.1109/ICCV.2015.533

  26. Levander, O.: Autonomous ships on the high seas. IEEE Spectr. 54(2), 26–31 (2017). https://doi.org/10.1109/MSPEC.2017.7833502

    Article  Google Scholar 

  27. Lutz, R.K.: An algorithm for the real time analysis of digitised images. Comput. J. 23(3), 262 (1980). https://doi.org/10.1093/comjnl/23.3.262

    Article  MATH  Google Scholar 

  28. Mahler, R.: A brief survey of advances in random-set fusion. In: 2015 International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 62–67 (2015). https://doi.org/10.1109/ICCAIS.2015.7338726

  29. Maresca, S., Braca, P., Horstmann, J.: Detection, tracking and fusion of multiple HFSW radars for ship traffic surveillance: experimental performance assessment. In: 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, pp. 2420–2423 (2013). https://doi.org/10.1109/IGARSS.2013.6723308

  30. Mazzarella, F., Vespe, M.: SAR ship detection and self-reporting data fusion based on traffic knowledge. IEEE Geosci. Remote Sens. Lett. 12, 1685 (2015)

    Article  Google Scholar 

  31. Nikoli\(\acute{\text{c}}\), D., Popovi\(\acute{\text{ c }}\), Z., Borenovi\(\acute{\text{ c }}\), M., Stojkovi\(\acute{\text{ c }}\), N., Orli\(\acute{\text{ c }}\), V., Dzvonkovskaya, A., Todorovi\(\acute{\text{ c }}\), B.M.: Multi-radar multi-target tracking algorithm for maritime surveillance at oth distances. In: 2016 17th International Radar Symposium (IRS), pp. 1–6 (2016). https://doi.org/10.1109/IRS.2016.7497299

  32. Osekowska, E., Johnson, H., Carlsson, B.: Grid size optimization for potential field based maritime anomaly detection. Transp. Res. Procedia 3, 720–729 (2014). https://doi.org/10.1016/j.trpro.2014.10.051

    Article  Google Scholar 

  33. Pallotta, G., Vespe, M., Bryan, K.: Vessel pattern knowledge discovery from ais data: a framework for anomaly detection and route prediction. Entropy 15(6), 2218–2245 (2013). https://doi.org/10.3390/e15062218

    Article  MATH  Google Scholar 

  34. Pulford, G.W.: Taxonomy of multiple target tracking methods. IEEE Proc. Radar Sonar Navig. 152(5), 291–304 (2005). https://doi.org/10.1049/ip-rsn:20045064

    Article  Google Scholar 

  35. Schuhmacher, D., Vo, B.T., Vo, B.N.: On performance evaluation of multi-object filters. In: 2008 11th International Conference on Information Fusion, pp. 1–8 (2008)

  36. Schuster, M., Blaich, M., Reuter, J.: Collision avoidance for vessels using a low-cost radar sensor. The International Federation of Automatic Control, pp. 9673–9678 (2014)

  37. Siegert, G., Banyś, P., Heymann, F.: Improving the maritime traffic situation assessment for a single target in a multisensor environment. In: Maritime Knowledge Discovery and Anomaly Detection Workshop Proceedings, European Commission—Joint Research Center, Ispra, pp. 78–82 (2016). https://doi.org/10.2788/025881

  38. Siegert, G., Banyś, P., Martínez, C.S., Heymann, F.: EKF based trajectory tracking and integrity monitoring of AIS data. IEEE/ION Position. Location and Navigation Symposium—PLANS, pp. 887–897. IEEE, Savannah (2016)

  39. Siegert, G., Banyś, P., Hoth, J., Heymann, F.: Counteracting the effects of GNSS jamming in a maritime multi-target scenario by fusing AIS with radar data. In: ION International Technical Meeting, International Organization of Navigation, Monterrey (2017)

  40. Tugnait, J.K.: Tracking of multiple maneuvering targets in clutter using multiple sensors, IMM and JPDA coupled filtering. In: Proceedings of the 2003 American Control Conference, vol. 2, pp. 1248–1253 (2003). https://doi.org/10.1109/ACC.2003.1239759

  41. United Nations Conference on Trade and Development (UNCTAD) Review of Maritime Transport 2016, United Nations publication, chap 2, p. 5 (2016)

  42. Yan, J., Liu, H., Pu, W., Jiu, B., Liu, Z., Bao, Z.: Benefit analysis of data fusion for target tracking in multiple radar system. IEEE Sens. J. 16(16), 6359–6366 (2016). https://doi.org/10.1109/JSEN.2016.2581824

    Article  Google Scholar 

Download references

Acknowledgements

We thank the crew of the BALTIC TAUCHER II for their support. We also thank our colleagues Uwe Netzband, Stefan Gewies and Carsten Becker for their helpful assistance during the measurement campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Siegert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegert, G., Hoth, J., Banyś, P. et al. Generic framework for vessel detection and tracking based on distributed marine radar image data. CEAS Space J 11, 65–79 (2019). https://doi.org/10.1007/s12567-018-0208-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-018-0208-6

Keywords

Navigation