Skip to main content
Log in

MACS-Mar: a real-time remote sensing system for maritime security applications

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The modular aerial camera system (MACS) is a development platform for optical remote sensing concepts, algorithms and special environments. For real-time services for maritime security (EMSec joint project), a new multi-sensor configuration MACS-Mar was realized. It consists of four co-aligned sensor heads in the visible RGB, near infrared (NIR, 700–950 nm), hyperspectral (HS, 450–900 nm) and thermal infrared (TIR, 7.5–14 µm) spectral range, a mid-cost navigation system, a processing unit and two data links. On-board image projection, cropping of redundant data and compression enable the instant generation of direct-georeferenced high-resolution image mosaics, automatic object detection, vectorization and annotation of floating objects on the water surface. The results were transmitted over a distance up to 50 km in real-time via narrow and broadband data links and were visualized in a maritime situation awareness system. For the automatic onboard detection of floating objects, a segmentation and classification workflow based on RGB, IR and TIR information was developed and tested. The completeness of the object detection in the experiment resulted in 95%, the correctness in 53%. Mostly, bright backwash of ships lead to an overestimation of the number of objects, further refinement using water homogeneity in the TIR, as implemented in the workflow, couldn’t be carried out due to problems with the TIR sensor, else distinctly better results could have been expected. The absolute positional accuracy of the projected real-time imagery resulted in 2 m without postprocessing of images or navigation data, the relative measurement accuracy of distances is in the range of the image resolution, which is about 12 cm for RGB imagery in the EMSec experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jha, M.N., Levy, J., Gao, Y.: Advances in remote sensing for oil spill disaster management: state-of-the-art sensors technology for oil spill surveillance. Sensors. 8(1), 236–255 (2008). https://doi.org/10.3390/s8010236

    Article  Google Scholar 

  2. Zimmermann, G., Badaev, W.W., Malkevich, M.S., Piesik, B.: The MKS-M remote-sensing experiment for determination of ocean and atmospheric parameters from SALYUT-7. Acta Astronaut. 12(7–8), 475–483 (1985). https://doi.org/10.1016/0094-5765(85)90118-3

    Article  Google Scholar 

  3. Keith, D.J., Schaeffer, B.A., Lunetta, R.S., Gould, R.W. Jr., Rocha, K., Cobb, D.J.: Remote sensing of selected water-quality indicators with the hyperspectral imager for the coastal ocean (HICO) sensor. Int. J. Remote Sens. 35(9), 2927–2962 (2014). https://doi.org/10.1080/01431161.2014.894663

    Article  Google Scholar 

  4. Sobrino, J.A., Jiménez-Muñoz, J.C., Zarco-Tejada, P.J., Sepulcre-Cantó, G., de Miguel, E., Sòria, G., Romaguera, M., Julien, Y., Cuenca, J., Hidalgo, V., Franch, B., Mattar, C., Morales, Gillespie, L.A., Sabol, D., Balick, L., Su, Z., Jia, L., Gieske, A., Timmermans, W., Olioso, A., Nerry, F., Guanter, L., Moreno, J., Shen, Q.: Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview. Hydrol. Earth Syst. Sci. 13(11), 2031–2037 (2009). https://doi.org/10.5194/hess-13-2031-2009

    Article  Google Scholar 

  5. Legeckis, R.: A survey of worldwide sea surface temperature fronts detected by environmental satellites. J. Geophys. Res. 83(C9), 4501–4522 (1978). https://doi.org/10.1029/JC083iC09p04501

    Article  Google Scholar 

  6. Corbane, Ch, Najman, L., Pecoul, E., Demagistri, L., Petit, M.: A complete processing chain for ship detection using optical satellite imagery. Int. J. Remote Sens. 31(22), 5837–5854 (2010). https://doi.org/10.1080/01431161.2010.512310

    Article  Google Scholar 

  7. Müller, R., Berg, M., Casey, S., Ellis, G., Flingelli, C., Kiefl, R., Twele, A.: Optical satellite service for EMSA (OPSSERVE)—near real-time detection of vessels and activities with optical satellite imagery. In: ESA Living Planet Symposium, Proceedings of the conference held on 9–13 September 2013 at Edinburgh in United Kingdom. ESA SP-722. 2–13, p. 309 (2012)

  8. Barrick, D.: Remote sensing of sea state by radar. In: Ocean 72—IEEE International Conference on Engineering in the Ocean Environment, pp. 186–192, Newport. (1972) https://doi.org/10.1109/OCEANS.1972.1161190

  9. Daedelow, H., Schwarz, E., Voinov, S.: Near real time applications to retrieve wind products for maritime situational awareness. DLRK 2016, 13.-15. September 2016, Braunschweig (2016)

  10. Pavlakis, P., Sieber, A., Alexandry, S.: Monitoring oil-spill pollution in the Mediterranean with ERS SAR. ESA Earth Obs. Q. 52, 8–11 (1996).

    Google Scholar 

  11. Eldhuset, K.: An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions. IEEE Trans. Geosci. Remote Sens. 34(4), 1010–1019 (1996). https://doi.org/10.1109/36.508418

    Article  Google Scholar 

  12. Brusch, S., Lehner, S., Schwarz, E., Fritz, T.: Near real time ship detection experiments. In: SeaSAR 2010: Advances in SAR Oceanography from ENVISAT, ERS and ESA Third Party Missions. Workshop ESA ESRIN, Frascati (2010)

    Google Scholar 

  13. Høye, G.K., Eriksen, T., Meland, B.J., Narheim, B.T.: Space-based AIS for global maritime traffic monitoring. Acta Astronaut. 62(2–3), 240–245 (2008). https://doi.org/10.1016/j.actaastro.2007.07.001

    Article  Google Scholar 

  14. Clazzer, F., Lázaro Blasco, F., Plass, S.: Enhanced AIS receiver design for satellite reception. CEAS Space J. 8(4), 257–268 (2016). https://doi.org/10.1007/s12567-016-0122-8

    Article  Google Scholar 

  15. Robbe, N., Hengstermann, T.: Remote sensing of marine oil spills from airborne platforms using multi-sensor systems. Water Pollution VIII: Modelling, Monitoring and Management, pp. 347–355. (2006) https://doi.org/10.2495/WP060351

  16. Optimare Systems GmbH (2017): Octopod—the all-in-one airborne surveillance pod, product flyer. http://www.optimare.de/cms/fileadmin/PDF/GB_FEK/Flyer-DINA3-OctoPod-28-02-2017-ENGL_klein.pdf. Accessed 10 Jan 2017

  17. Fischer, Y., Bauer, A.: Object-oriented sensor data fusion for wide maritime surveillance. In: 2010 International WaterSide Security Conference, Carrara, 2010, pp. 1–6. (2010). https://doi.org/10.1109/WSSC.2010.5730244

  18. Gruener, K.: The Three-frequency microwave radiometer of a 2nd generation airborne surveillance system for remote sensing of maritime oil pollution. In: Proceedings of IEEE Workshop RF and Microwave Noise, Ilmenau (1996), pp. 66–69 (1996)

  19. L3-WESCAM: MX-25 technical data sheet. (2017). http://www.wescam.com/wp-content/uploads/PDS-MX-25-25D-January-2017.pdf. Accessed 19 Dec 2016

  20. The Maritime Safety and Security Center: The Maritime Safety and Security Centre (MSSC)—communication and cooperation network for Germany’s maritime safety and security. (2017). http://www.msz-cuxhaven.de/EN/Home/home_node.html. Accessed 12 Feb 2017

  21. European Maritime Safety Agency: Annual Overview of Marine Casualties and Incidents 2016. Published 2016/12/20, updated 07.03.2017. http://www.emsa.europa.eu/news-a-press-centre/external-news/item/2903-annual-overview-of-marine-casualties-and-incidents-2016.html. Accessed 20 Dec 2016

  22. Kay, S., Hedley, J.D., Lavender, S.: Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths. Remote Sens. 1(4), 697–730 (2009). https://doi.org/10.3390/rs1040697

    Article  Google Scholar 

  23. Streher, A.S., Goodman, J.A., Soares Galvao, L., Faria Barbosa, C.C., Freire Silva, T.S., Leao de Moraes Novo, E.M.: Sunglint temoval in high spatial resolution hyperspectral images under different viewing geometries. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto. 7958–7965. (2013) (Brasil). http://marte2.sid.inpe.br/col/dpi.inpe.br/marte2/2013/05.17.15.03.08/doc/mirrorget.cgi?metadatarepository=dpi.inpe.br/marte2/2013/05.29.00.39.11&choice=full&languagebutton=en

  24. Lehmann, F., Berger, R., Brauchle, J., Hein, D., Meißner, H., Pless, S.: MACS—modular airborne camera system for generating photogrammetric high-resolution products. Deutsche Gesellschaft für Geowissenschaften. 2011(6), 435–446 (2011). https://doi.org/10.1127/1432-8364/2011/0096

    Google Scholar 

  25. Brauchle, J., Hein, D., Berger, R.: Detailed and highly accurate 3D models of high mountain areas by the MACS-Himalaya aerial camera platform. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-7/W3, 1129–1131 (2015). https://doi.org/10.5194/isprsarchives-XL-7-W3-1129-2015

    Article  Google Scholar 

  26. Wieden, A., Stebner, K.: Referenzorientierung für Bilddaten aus Mehrkopfkamerasystemen. DGPF Tagungsband. 22, 518–525 (2013)

    Google Scholar 

  27. Scherbaum, P., Brauchle, J., Kraft, Th, Pless, S.: MACS-Mar—a real-time capable multisensor remote sensing system for maritime applications. In: 2015 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES). Curan Associates, Inc. ICARES 2015, 03.-05. Dez. 2015, Kuta, Bali, Indonesien. (2015). https://doi.org/10.1109/ICARES.2015.7429839

  28. Gholizadeh, M.H., Melesse, A.M., Reddi, L.: A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors (Basel, Switzerland). 16(8), 1298 (2016). https://doi.org/10.3390/s16081298

    Article  Google Scholar 

  29. Krawczyk, H., Neumann, A., Riha, S.: (2009): Multivariate interpretation algorithm for water quality in the Baltic Sea. In: Proceedings SPIE 7473, Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2009, 747303 (September 09, 2009)

  30. Dougherty, E.: (1992): Introduction to Morphological Image Processing, SPIE Optical Imaging Press, Michigan. ISBN 081940845X

    Google Scholar 

  31. Egenhofer M.J.: A model for detailed binary topological relationships. In: Geomatica, vol. 47, No. 3&4, pp. 261–273. Canadian Institute of Geomatics, Ontario (1993)

  32. Winter, S.: (1996): Beobachtungsunsicherheit und topologische Relationen. In: Bill, R. (ed.) Workshop Datenqualität und Metainformation in Geo-Informationssystemen, pp. 141–154. Institute of Geodesy and Geoinformatics, The University of Rostock, Rostock.

  33. Straub, B.-M.: Automatische Extraktion von Bäumen aus Fernerkundungsdaten. Hannover. Dissertation. (2003)

  34. Geodetic survey 2008 this internal survey by water and shipping authority is nondisclosed

  35. Novatel SPAN STIM300 data sheet, May 2016. http://www.novatel.com/assets/Documents/Papers/OEM-STIM300-PS.pdf. Accessed 14 Mar 2017

  36. Liedtke, G.: Seezeichen an Nord- und Ostsee. http://www.baken-net.de. Accessed 25 Feb 2017

  37. Kreienfeld, M., Giese, K.: Development of a RPV-demonstrator for maritime security applications. DLRK 2015, 22.-24. Sept. 2015, Rostock (2015)

  38. Brauchle, J., Bayer, S., Berger, R.: Automatic ship detection on multispectral and thermal infrared aerial images using MACS-Mar remote sensing platform. Pacific-Rim Symposium on Image and Video Technology (PSIVT2017) accepted paper, 20.-24. November 2017, Wuhan, China (2017)

Download references

Acknowledgements

This work was funded by the Federal Ministry of Research and Education (FKZ 13N12746). The research was supported by the Program Coordination Defence & Security Research at DLR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Brauchle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brauchle, J., Bayer, S., Hein, D. et al. MACS-Mar: a real-time remote sensing system for maritime security applications. CEAS Space J 11, 35–44 (2019). https://doi.org/10.1007/s12567-018-0207-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-018-0207-7

Keywords

Navigation