Skip to main content

Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

Abstract

This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

References

  1. Guerrero, H.: Development of miniaturized instrumentation for planetary exploration and its application to the Mars MetNet Precursor Mission. In: EGU General Assembly Conference Abstracts 2010, vol. 12, p 13330

  2. Apéstigue, V. et al.: DREAMS-SIS: a miniature instrument for the measurement of atmospheric optical depth on ExoMars 2016 EDM. In: International workshop on instrumentation for planetary missions—IPM-2014. Greenblet. Maryland (2014)

  3. Esposito, F., Debei, S., Bettanini, C., Molfese, C., Arruego Rodriguez, I., Colombatti, G., Harri, A.M., Montmessin, F., Wilson, C., Aboudan, A., others: The DREAMS experiment of the ExoMars 2016 mission for the study of Martian environment during the dust storm Season. In: Eighth International Conference on Mars 2014, p. 1246

  4. Arruego, I., Apéstigue, V., Jiménez, J.J., Martínez-Oter, J., Álvarez-Ríos, F.J., González-Guerrero, M., Rivas, J., Azcue, J., Martín, N.I., Toledo, D., et al.: DREAMS-SIS: the solar irradiance sensor on-board the ExoMars 2016 lander. Adv. Space Res. 60(1), 103–120 (2017)

    Article  Google Scholar 

  5. Toledo, D., Arruego, I., Apéstigue, V., Jiménez, J.J., Gómez, L., Yela, M., Rannou, P., Pommereau, J.-P.: Measurement of dust optical depth using the solar irradiance sensor (SIS) onboard the ExoMars 2016 EDM. Planet. Space Sci. 138, 33–43 (2017)

    Article  Google Scholar 

  6. http://mars.nasa.gov/mars2020/mission/rover/. Accessed July 2017

  7. http://exploration.esa.int/mars/48088-mission-overview/. Accessed July 2017

  8. Wyatt, C.L.: Radiometric Calibration: Theory and Methods. Academic Press Inc, New York (1978)

    Google Scholar 

  9. Wyatt, C.L.: Electro-optical System Design for Information Processing. McGraw-Hill, New York (1991)

    Google Scholar 

  10. Hülsen, G., Gröbner, J., Bais, A., Blumthaler, M., Disterhoft, P., Johnsen, B., Lantz, K.O., Meleti, C., Schreder, J., Vilaplana Guerrero, J.M.: others: intercomparison of erythemal broadband radiometers calibrated by seven UV calibration facilities in Europe and the USA. Atmos. Chem. Phys. 8(16), 4865–4875 (2008)

    Article  Google Scholar 

  11. Piedehierro, A.A., Cancillo, M.L., Serrano, A., Antón, M., Vilaplana, J.M.: Global irradiance calibration of multifilter UV radiometers. J. Geophys. Res. Atmos. 121(1), 427–438 (2016)

    Article  Google Scholar 

  12. Tansock, J., Bancroft, D., Butler, J., Cao, C., Datla, R., Hansen, S., Helder, D., Kacker, R., Latvakoski, H., Mylnczak, M., et al.: Guidelines for radiometric calibration of electro-optical instruments for remote sensing. (2015). https://doi.org/10.6028/NIST.HB.157

  13. Tansock, J.J., Hansen, S., Paskett, K., Shumway, A., Peterson, J., Stauder, J., Gordley, L.L., Wang, Y., Melbert, M., Russell Iii, J.M., et al.: SABER ground calibration. Int. J. Remote Sens. 24(2), 403–420 (2003)

    Article  Google Scholar 

  14. Datla, R., Shao, X., Cao, C., Wu, X.: Comparison of the calibration algorithms and SI traceability of MODIS, VIIRS, GOES, and GOES-R ABI sensors. Remote Sens. 8(2), 126 (2016)

    Article  Google Scholar 

  15. European Cooperation for Space Standardization (ECSS), Space engineering—photovoltaic assemblies and components, ECSS-E-ST-20-08C, ECSS Secretariat, ESA-ESTEC, 18 July (2012)

  16. Marquez, J.M.A., Bohórquez, M.Á.M., Garcia, J.M., Nieto, F.J.A.: A new automatic system for angular measurement and calibration in radiometric instruments. Sensors 10(4), 3703–3717 (2010)

    Article  Google Scholar 

  17. http://www.esa.int/Our_Activities/Space_Engineering_Technology/External_Laboratories_Electrical. Accessed July 2017

  18. Gras, A., Fernandez-Marin, J.M., Aguilar, J.M., Robert, P., Baur, C.: Multi-source solar simulator characterization for establishing AM0 equivalent conditions. In: 8th European space power conference, September 2008. ESA Special Publication, p. 92

  19. Hudson, B., Miller, G., Phillips, T.: Sparse voronoi refinement. In: Proceedings of the 15th international meshing roundtable 2006, pp. 339–356

  20. Sanchez-Brea, L.M., Bernabeu, E.: Determination of the optimum sampling frequency of noisy images by spatial statistics. Appl. Opt. 44(16), 3276–3283 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to show our gratitude to the personnel that have participated in these instruments development at INTA, especially to the Space Sensors Engineering Area team and to the SPASOLAB team. Part of this work has been funded with the help of the Spanish National Research, Development and Innovation Program, through the Grants AYA2011-29967-C05-01 and ESP2014-54256-C4-3-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Jiménez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiménez, J.J., J Álvarez, F., Gonzalez-Guerrero, M. et al. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies. CEAS Space J 10, 127–145 (2018). https://doi.org/10.1007/s12567-018-0194-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-018-0194-8

Keywords

  • Martian atmosphere
  • Solar irradiance sensor
  • ExoMars
  • Mars 2020
  • Optical calibration