Skip to main content
Log in

Modal analysis of passive flow control for the turbulent wake of a generic planar space launcher

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The turbulent wake of a generic planar space launcher equipped with two passive flow control devices is simulated using a zonal RANS–LES method and analyzed by dynamic mode decomposition (DMD). In the first approach, the effect of a classical boat tail on the wake is examined. In the second concept, a flow control device consisting of semi-circular lobes integrated at the base shoulder of the main body is used. The objective of the two concepts is to reduce the reattachment length and thus the lever arm of the forces as well as to stabilize the separated shear layer. Using a boat tail, the reattachment length can be reduced by 50%. Furthermore, it is shown that the semi-circular lobes enhance the turbulent mixing and the shear layer growth rate. Hence, they significantly reduce the reattachment length by about 75%. The semi-circular lobes partially reduce undesired low-frequency pressure fluctuations on the nozzle surface. However, this reduction is achieved at the expense of an increase of high-frequency pressure fluctuations due to intensified small turbulent scales. The DMD analysis of the velocity field reveals that the large-scale coherent structures featuring a wave length of two step heights observed in the reference configuration without flow control can be suppressed by the lobes. The spanwise wave length of the coherent structures seems to depend on the geometry of the lobes, since all detected spatial DMD modes show a spanwise periodicity being equal to the distance between two lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bolgar, I., Scharnowski, S., Kähler, C.J.: Control of the reattachment length of a transonic 2d backward-facing step flow. International conference on jets, wakes and separated flows (2015)

  2. Bradshaw, P., Wong, F.: The reattachment and relaxation of a turbulent shear layer. J. Fluid Mech. 52(1), 113–135 (1972)

    Article  Google Scholar 

  3. Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layer. J. Fluid Mech. 64(4), 775–816 (1974)

    Article  Google Scholar 

  4. Deck, S., Thorigny, P.: Unsteadiness of an axisymmetric separating-reattaching flow: numerical investigation. Phys. Fluids 19, 065103 (2007)

    Article  MATH  Google Scholar 

  5. Depres, D., Reijasse, P.: Analysis of unsteadiness in afterbody transonic flows. AIAA J. 42(12), 2541–2550 (2004)

    Article  Google Scholar 

  6. Driver, D.M., Seegmiller, H.L., Marvin, J.G.: Time-dependent behavior of a reattaching shear layer. AIAA J. 25(7), 914–919 (1987)

    Article  Google Scholar 

  7. Eaton, J.K., Johnston, J.P.: A review of research on subsonic turbulent flow reattachment. AIAA J. 19(9), 1093–1100 (1981)

    Article  Google Scholar 

  8. Fares, E., Schröder, W.: A general one-equation turbulence model for free shear and wall-bounded flows. Flow Turbul. Combust. 73, 187–215 (2004)

    Article  MATH  Google Scholar 

  9. Friedrich, R., Arnal, M.: Analysing turbulent backward-facing step flow with the low-pass-filtered Navier–Stokes Equations. J. Wind Eng. Ind. Aerodyn. 35, 101–128 (1990)

    Article  Google Scholar 

  10. Gai, S.L., Sharma, S.D.: Subsonic turbulent flow over a rearward facing segmented step. Phys. Fluids 27, 544–546 (1984)

    Article  Google Scholar 

  11. Isomoto, K., Honami, S.: The effect of inlet turbulence intensity on the reattachment process over a backward-facing step. J. Fluids Eng. 111, 87–92 (1989)

    Article  Google Scholar 

  12. Jovanovic, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26, 024103 (2014)

    Article  Google Scholar 

  13. Kaltenbach, H., Janke, G.: Direct numerical simulation of flow separation behind a swept, rearward-facing step at Re\(_h=3000\). Phys. Fluids 330, 349–374 (2000)

    MATH  Google Scholar 

  14. Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–374 (1997)

    Article  MATH  Google Scholar 

  15. Marie, S., Druault, P., Lambare, H., Schrijer, F.: Experimental analysis of the pressure-velocity correlations of external unsteady flow over rocket launchers. Aerospace Sci. Technol. 30, 83–93 (2013)

    Article  Google Scholar 

  16. Park, H., Jeon, W.P., Choi, H., Yoo, J.Y.: Mixing enhancement behind a backward-facing step using tabs. Phys. Fluids 19, 105103 (2007)

    Article  MATH  Google Scholar 

  17. Robinet, J.C., Dussauge, J.P., Casalis, G.: Wall effect on the convective-absolute boundary for the compressible shear layer. Theor. Comput. Fluid Dyn. 15, 143–163 (2001)

    Article  MATH  Google Scholar 

  18. Roidl, B., Meinke, M., Schröder, W.: A reformulated synthetic turbulence generation method for a zonal rans-les method and its application to zero-pressure gradient boundary layers. Int. J. Heat Fluid Flow 44, 28–40 (2013)

    Article  Google Scholar 

  19. Roidl, B., Meinke, M., Schröder, W.: Boundary layers affected by different pressure gradients investigated computationally by a zonal rans-les method. Int. J. Heat Fluid Flow 45, 1–13 (2014)

    Article  Google Scholar 

  20. Scharnowski, S., Bolgar, I., Kähler, C.J.: Characterization of turbulent structures in a transonic backward-facing step flow. Flow, Turbulence and Combustion, pp. 1–21 (2016)

  21. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schrijer, F., Sciacchitano, A., Scarano, F.: Experimental investigation of flow control devices for the reduction of transonic buffeting on rocket afterbodies. 15th Symposium on Applications of Laser Techniques to Fluid Mechanics (2010)

  23. Schrijer, F., Sciacchitano, A., Scarano, F.: Spatio-temporal and modal analysis of unsteady fluctuations in a high-subsonic base flow. Phys. Fluids 26, 086101 (2014)

    Article  Google Scholar 

  24. Silhan, F.V., Cubbage, J.M.: Drag of conical and circular-arc boattail afterbodies at mach number of 0.6 to 1.3. NACA RM L56K22 (1957)

  25. Silveria Neto, A., Grand, D., Metais, O., Lesieur, M.: A numerical investigation of the coherent vortices in turbulence behind a backward-facing step. J. Fluid Mech. 256, 1–25 (1993)

    Article  MATH  Google Scholar 

  26. Simpson, R.L.: Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205–2034 (1989)

    Article  MATH  Google Scholar 

  27. Statnikov, V., Bolgar, I., Scharnowski, S., Meinke, M., Kähler, C.J., Schröder, W.: Analysis of characteristic wake flow modes on a generic transonic backward-facing step configuration. Eur. J. Mech. B/Fluids 59, 124–134 (2016)

    Article  MathSciNet  Google Scholar 

  28. Statnikov, V., Meinke, M., Schröder, W.: Reduced-order analysis of buffet flow of space launchers. J. Fluid Mech. 815, 1–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Statnikov, V., Sayadi, T., Meinke, M., Schmid, P., Schröder, W.: Analysis of pressure perturbation sources on a generic space launcher after-body in supersonic flow using zonal turbulence modeling and dynamic mode decomposition. Phys. Fluids 27, 016103 (2015)

    Article  Google Scholar 

  30. Waitz, I.A., Qiu, Y.J., Manning, T.A., Fung, A.K.S.: Enhanced mixing with streamwise vorticity. Prog. Aerospace Sci. 33, 323–351 (1997)

    Article  Google Scholar 

  31. Weiss, P.E., Deck, S.: Control of the antisymmetric mode (\(m=1\)) for high Reynolds axisymmetric turbulent separating/reattaching flows. Phys. Fluids 23, 095102 (2011)

    Article  Google Scholar 

  32. Weiss, P.E., Deck, S., Robinet, J.C., Sagaut, P.: On the dynamics of axisymmetric turbulent separating/reattaching flows. Phys. Fluids 21, 075103 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Financial support has been provided by the German Research Foundation (Deutsche Forschungsgemeinschaft-DFG) in the framework of the Sonderforschungsbereich Transregio 40. The authors are grateful for the computing resources provided by the High-Performance Computing Center Stuttgart (HLRS) and the Jülich Supercomputing Center (JSC) within a Large-Scale Project of the Gauss Center for Supercomputing (GCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Loosen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loosen, S., Statnikov, V., Meinke, M. et al. Modal analysis of passive flow control for the turbulent wake of a generic planar space launcher. CEAS Space J 10, 189–202 (2018). https://doi.org/10.1007/s12567-017-0183-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-017-0183-3

Keywords

Navigation