Skip to main content

Ka-band to L-band frequency down-conversion based on III–V-on-silicon photonic integrated circuits


In this work, we present the design, simulation and characterization of a frequency down-converter based on III–V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5–30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of − 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Sotom M., Aveline M., Barbaste R., Benazet B., Le Kernec A., Magnaval J., Picq M.: Flexible photonic payload for broadband telecom satellites: from concepts to system demonstrators. In: International Conference on Space Optics, Biarritz, France (2016)

  2. 2.

    Salvatore V., Feudale M., Piccinni M., Pisano A., Sotom M.: Road map for future payloads using photonic technology. In: Third ESA Workshop on Advanced Telecom Payloads, Noordwijk, The Netherlands (2016)

  3. 3.

    Marpaung, D., Roeloffzen, C., Heideman, R., Leinse, A., Sales, S., Capmany, J.: Integrated microwave photonics. Laser Photonics Rev. 7(4), 506–538 (2013)

    Article  Google Scholar 

  4. 4.

    Cabon B., Le Guennec Y., Lourdiane M., Maury G.: Photonic mixing in RF modulated optical links. In: Proceedings of IEEE 19th Annual Meeting Lasers and Electro-Optic Society, pp. 408–409 (2006)

  5. 5.

    Zhang T., Zhang F., Chen X., Pan S.: A simple microwave photonic downconverter with high conversion efficiency based on a polarization modulator. In: Asia Communications Photonics Conference, Shanghai, China, Paper AF2E.4. (2014)

  6. 6.

    Guennec, Y.L., Maury, G., Yao, J., Cabon, B.: New optical microwave up-conversion solution in radio-over-fiber networks for 60-GHz wireless applications. J. Lightw. Technol. 24(3), 1277–1282 (2006)

    Article  Google Scholar 

  7. 7.

    Yao, J.: Microwave photonics. J. Lightw. Technol. 27(3), 314–335 (2009)

    Article  Google Scholar 

  8. 8.

    Piqueras M. A., Beltrán M., García J., Villalba P., Navasquillo O.: Tunable and reconfigurable photonic rf filtering for flexible payloads. In: International Conference on Space Optics, Biarritz, France (2016)

  9. 9.

    Wang, Z., Van Gasse, K., Moskalenko, V., Latkowski, S., Bente, E., Kuyken, B., Roelkens, G.: A III–V-on-Si ultra dense comb laser. Light Sci. Appl. 6, 16260 (2017)

    Article  Google Scholar 

  10. 10.

    Chen, H., Peters, J., Bowers, J.: Forty Gb/s hybrid silicon Mach–Zehnder modulator with low chirp. Opt. Express 19, 1455–1460 (2011)

    Article  Google Scholar 

  11. 11.

    Zeiler M.: Radiation hardness evaluation and phase shift enhancement through ionizing radiation in silicon Mach–Zehnder modulators. Radiation Effects on Components and Systems (RADECS) (2016)

  12. 12.

    Underwood, D.G., Drake, G., Fernando, W.S., Stanek, R.W.: Modulator-based, high bandwidth optical links for HEP experiments. IEEE Trans. Nucl. Sci. 60(5), 3497–3501 (2013)

    Article  Google Scholar 

  13. 13.

    Chu, M., Hou, S., Lee, S., Lu, R., Su, D., Teng, P.: Radiation hardness of the 1550 nm edge emitting laser for the optical links of the CDF silicon tracker. Nucl. Instrum. Methods Phys. Res. Sect. A 541(1), 208–212 (2005)

    Article  Google Scholar 

  14. 14.

    Chan, E.H., Minasian, R.A.: Microwave photonic downconverter with high conversion efficiency. J. Lightw. Technol. 30(23), 3580–3585 (2012)

    Article  Google Scholar 

  15. 15.

    Roelkens, G., et al.: III–V-on-silicon photonic devices for optical communication and sensing. Photonics (Invited) 2(3), 969–1004 (2015)

    Article  Google Scholar 

  16. 16.

    Zhuang, J.P., Pusino, V., Ding, Y., Chan, S.C., Sorel, M.: Experimental investigation of anti-colliding pulse mode-locked semiconductor lasers. Opt. Lett. 40(4), 617–620 (2015)

    Article  Google Scholar 

  17. 17.

    Keyvaninia, S., et al.: III–V-on-silicon anti-colliding pulse-type mode-locked laser. Opt. Lett. 40, 3057–3060 (2015)

    Article  Google Scholar 

  18. 18.

    Hulme J.C. et al.: Fully integrated heterodyne microwave generation on heterogeneous silicon-III/V. In: 2016 IEEE International Topical Meeting on Microwave Photonics (MWP), Long Beach, CA, pp. 336–339 (2016)

  19. 19.

    GaAs MMIC HMC338, Accessed 26 Oct 2017

  20. 20.

    Dong, P., et al.: GHz-bandwidth optical filters based on high-order silicon ring resonators. Opt. Express 18, 23784–23789 (2010)

    Article  Google Scholar 

Download references


This work was supported by the ESA ARTES 5.1 ‘Electro-photonic frequency converter’ project.

Author information



Corresponding author

Correspondence to K. Van Gasse.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Gasse, K., Wang, Z., Uvin, S. et al. Ka-band to L-band frequency down-conversion based on III–V-on-silicon photonic integrated circuits. CEAS Space J 9, 531–541 (2017).

Download citation


  • Microwave engineering
  • Integrated photonics
  • Frequency conversion
  • Mode-locked laser