An afocal telescope configuration for the ESA ARIEL mission

Abstract

Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (ARIEL) is a candidate as an M4 ESA mission to launch in 2026. During its 3.5 years of scientific operations, ARIEL will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the solar system. ARIEL aims to give a breakthrough in the observation of exoplanet atmospheres and understanding of the physics and chemistry of these far-away worlds. ARIEL is based on a 1 m class telescope feeding a collimated beam into two separate instrument modules: a spectrometer module covering the waveband between 1.95 and 7.8 μm and a combined fine guidance system/visible photometer/NIR spectrometer. The telescope configuration is a classic Cassegrain layout used with an eccentric pupil and coupled to a tertiary off-axis paraboloidal mirror. To constrain the thermo-mechanically induced optical aberrations, the primary mirror (M1) temperature will be monitored and finely tuned using an active thermal control system based on thermistors and heaters. They will be switched on and off to maintain the M1 temperature within ± 1 K by the telescope control unit (TCU). The TCU is a payload electronics subsystem also responsible for the thermal control of the spectrometer module detectors as well as the secondary mirror mechanism and IR calibration source management. The TCU, being a slave subsystem of the instrument control unit, will collect the housekeeping data from the monitored subsystems and will forward them to the master unit. The latter will run the application software, devoted to the main spectrometer management and to the scientific data on-board processing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Puig, L., Pilbratt, G.L., Heske, A., Escudero Sanz, I., Crouze, P.-E.: ESA M4 mission candidate ARIEL. Proc. SPIE 9904, 99041W (2016)

    Article  Google Scholar 

  2. 2.

    Tinetti, G., et al.: The science of ARIEL (atmospheric remote-sensing infrared exoplanet large-survey). Proc. SPIE 9904, 99041X (2016)

    Article  Google Scholar 

  3. 3.

    Perryman, M., et al.: Astrometric exoplanet detection with Gaia. Astrophys J 797(1), 1–22 (2014). doi:10.1088/0004-637X/797/1/14

    Article  Google Scholar 

  4. 4.

    Borucki, W.J., et al.: Kepler planet-detection mission: introduction and first results. Science 327(5968), 977–980 (2010)

    Article  Google Scholar 

  5. 5.

    Howell, S.B., et al.: The K2 mission: characterization and early results. PASP 126, 398–408 (2014)

    Article  Google Scholar 

  6. 6.

    ARIEL Science Study Team: ARIEL atmospheric remote-sensing infrared exoplanet large-survey—enabling planetary science across Light-Years, Assessment Study Report (Yellow Book), ESA/SCI(2017)2 (2017)

  7. 7.

    Ricker, G.R., et al.: The transiting exoplanet survey satellite. Proc. SPIE 9904, 99042B (2016)

    Article  Google Scholar 

  8. 8.

    Fortier, A., et al.: CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits. Proc. SPIE 9143, 91432J (2014)

    Google Scholar 

  9. 9.

    Ragazzoni, R., et al.: PLATO: a multiple telescope spacecraft for exo-planets hunting. Proc. SPIE 9904, 990428 (2016)

    Article  Google Scholar 

  10. 10.

    ARIEL Science Study Team: ARIEL Science Requirements Document, ESA-ARIEL-EST-SCI-RS-001 (2016)

  11. 11.

    ARIEL Science Study Team: ARIEL Mission Requirements Document, ESA-ARIEL-EST-MIS-RS-001 (2016)

  12. 12.

    Papageorgiou, A., et al.: ARIEL performance model, ARIEL-CRDF-PL-ML-001_2.0. https://arielspacemission.files.wordpress.com/2017/05/ariel-crdf-pl-ml-001_performance_model-iss-2-01.pdf (2017). Accessed 27 Oct 2017

  13. 13.

    Sarkar, S., et al.: Exploring the potential of the ExoSim simulator for transit spectroscopy noise estimation. Proc. SPIE 9904, 99043R (2016)

    Article  Google Scholar 

  14. 14.

    Sarkar, S., et al.: ARIEL performance analysis report, ARIEL-CRDF-PL-AN-001_2.2. https://arielspacemission.files.wordpress.com/2017/05/ariel-crdf-pl-an-001-performance-analysis-report-iss-2-2_01.pdf (2017). Accessed 27 Oct 2017

  15. 15.

    Sarkar, S., et al.: The effects of stellar variability on transit spectroscopy observation in the ARIEL space mission examined using the ExoSim simulator, EPSC Abstracts 11, EPSC2017-447-2 (2017)

  16. 16.

    Da Deppo, V., et al.: Design of an afocal telescope for the ARIEL mission. Proc. SPIE 9904, 990434 (2016)

    Article  Google Scholar 

  17. 17.

    Eccleston, P., et al.: An integrated payload design for the atmospheric remote-sensing infrared exoplanet large-survey (ARIEL). Proc. SPIE 9904, 990433 (2016)

    Article  Google Scholar 

  18. 18.

    Wright, G.S., et al.: The mid-infrared instrument for JWST, II: design and Build. Publ Astron. Soc. Pac. 127(953), 595–611 (2015)

    Article  Google Scholar 

  19. 19.

    Morgante, G.: Cryogenic characterization of the Planck sorption cooler system flight model. JINST 4, T12016 (2009)

    Article  Google Scholar 

  20. 20.

    http://www.teledyne-si.com/pdf-imaging/H1RG%20Brochure%20-%20GBA%20&%20Flight%20v2.pdf. Accessed 27 Oct 2017

  21. 21.

    Eccleston, P.: ARIEL payload design description, ARIEL-RAL-PL-DD-001_2.0. https://arielspacemission.files.wordpress.com/2017/05/ariel-ral-pl-dd-001_ariel-payload-design-description_iss-2-01.pdf (2017). Accessed 27 Oct 2017

  22. 22.

    McMurthy, C., et al.: Development of sensitive long-wave infrared detector arrays for passively cooled space missions. Opt Eng 52(9), 091804-1/-9 (2013)

    Google Scholar 

  23. 23.

    Middleton, K., et al.: ARIEL throughput budget, ARIEL-RAL-PL-TN-005 (2017)

  24. 24.

    Rutten, H., van Venrooij, M.: Telescope optics. Willmann-Bell Inc., Richmond (1999)

    Google Scholar 

  25. 25.

    Sheikh, D.A.: Improved silver mirror coating for ground and space-based astronomy. Proc. SPIE 9912, 991239 (2016)

    Article  Google Scholar 

  26. 26.

    Philips, A.C., et al.: Progress and new techniques for protected-silver coatings. Proc. SPIE 9151, 91511B (2014)

    Google Scholar 

  27. 27.

    Schürmann, M.: High-reflective coatings for ground and space based applications. In: Proceedings of the International Conference on Space Optics (ICSO) 2014, Tenerife, Canary Island, Spain, 7–10 October 2014 (2014)

  28. 28.

    Da Deppo, V., et al.: ARIEL telescope material trade-off, ARIEL-INAF-PL-TN-004_2.0. https://arielspacemission.files.wordpress.com/2017/05/ariel-inaf-pl-tn-004_telescope_material_selection_iss-21.pdf (2017). Accessed 27 Oct 2017

  29. 29.

    Da Deppo, V., et al.: The afocal telescope optical design and tolerance analysis for the ESA ARIEL mission, OSA technical digest. In: International Optical Design Conference, Denver, Colorado United States, 9–13 July 2017 (2017)

  30. 30.

    Sierra Roig, C., et al.: The ARIEL ESA mission on-board metrology. In: Proceedings of the IEEE International Workshop on Metrology for Aerospace (MetroAeroSpace), Padua, Italy, 21–23 June 2017, pp. 120–125 (2017)

  31. 31.

    De Sio, A., et al.: Alignment procedure for detector integration and characterization of the CaSSIS instrument onboard the TGO mission. Proc. SPIE 9904, 990452 (2016)

    Article  Google Scholar 

  32. 32.

    D’Ascanio, D., et al: PLM thermal analysis report TMM/GMM description and results, ARIEL-INAF-TN-0003_2.0. https://arielspacemission.files.wordpress.com/2017/05/ariel-inaf-pl-tn-0003_is_2_0_ariel-plm-thermal-analysis-report-51.pdf (2017). Accessed 27 Oct 2017

  33. 33.

    Focardi, M., et al.: The ARIEL instrument control unit design for the M4 mission selection review of the ESA’s cosmic vision program, to be published in special issue on ARIEL. Exp. Astron. (2017)

  34. 34.

    Guellec, F., et al.: ROIC development at CEA for SWIR detectors: pixel circuit architecture and trade-offs, Proceedings of the International Conference on Space Optics (ICSO) 2014, Tenerife, Canary Island, Spain, 7–10 October 2014 (2014)

  35. 35.

    Maciaszek, T., The Euclid Consortium.: Euclid near infrared spectrometer and photometer instrument concept and first test results obtained for different breadboards models at the end of phase C. Proc. SPIE 9904, 99040T (2016)

    Article  Google Scholar 

  36. 36.

    Focardi, M., et al.: The atmospheric remote-sensing infrared exoplanets large-survey (ARIEL) payload electronic subsystems. Proc. SPIE 9904, 990436 (2016)

    Article  Google Scholar 

  37. 37.

    Corcione, L., et al.: The data processing unit of the NISP instrument of the Euclid mission. Proc. SPIE 9143, 914331 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This activity has been realized under the Agenzia Spaziale Italiana (ASI) contract to the Istituto Nazionale di Astrofisica (INAF) (ARIEL 2015-038-R.0). The support from the ESA ARIEL Study Team is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vania Da Deppo.

Additional information

This paper is based on a presentation at the International Conference on Space Optics (ICSO), 18–21 October, 2016, Biarritz, France.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Da Deppo, V., Focardi, M., Middleton, K. et al. An afocal telescope configuration for the ESA ARIEL mission. CEAS Space J 9, 379–398 (2017). https://doi.org/10.1007/s12567-017-0175-3

Download citation

Keywords

  • Space instrumentation
  • Telescope
  • Optical design
  • Exoplanetary science
  • Active thermal control
  • ICU