Advertisement

CEAS Space Journal

, Volume 9, Issue 3, pp 289–297 | Cite as

Repetitive laser ignition by optical breakdown of a LOX/H2 rocket combustion chamber with multi-injector head configuration

  • Michael BörnerEmail author
  • Chiara Manfletti
  • Gerhard Kroupa
  • Michael Oschwald
Original Paper

Abstract

This paper reports on the repetitive laser ignition by optical breakdown within an experimental rocket combustion chamber. Ignition was performed by focusing a laser pulse generated by a miniaturized diode-pumped Nd:YAG laser system. The system, which delivers 33.2 mJ in 2.3 ns, was mounted directly to the combustion chamber. The ignition process and flame stabilization was investigated using an optical probe system monitoring the flame attachment across the 15 coaxial injector configuration. 1195 successful ignitions were performed proving the reliability of this laser ignition system and its applicability to the propellant combination LOX/hydrogen at temperatures of \(T_{{{\text{H}}_{ 2} }}\) = 120–282 K and \(T_{{{\text{O}}_{ 2} }}\) = 110–281 K.

Keywords

Igniter Laser ignition Laser plasma ignition Ignition dynamics Flame development Flame anchoring 

Notes

Acknowledgements

The work and support of Markus Dengler, Johann Fröse, Manuel Hofmann, Stefan Gröning, Justin Hardi, Robert Stützer, Dmitry Suslov, and the DLR P8 test bench team is greatly acknowledged.

References

  1. 1.
    Manfletti, C.: Laser ignition of an experimental cryogenic reaction and control thruster: pre-ignition conditions. J. Propul. Power 30(4), A1126–A1139 (2014)Google Scholar
  2. 2.
    Welland W.H.M., Brauers B.M.J., Vermeulen E.J.: Future igniter technologies. In: Space Propulsion Conference 2010, Bordeaux, France, 7–10 May 2010Google Scholar
  3. 3.
    Liou, L.C.: Laser ignition in liquid rocket engines. In: 30th Joint Propulsion Conference and Exhibit, AIAA-94-2980 (1994)Google Scholar
  4. 4.
    Morsy, M.H.: Review and recent developments of laser ignition for internal combustion engines applications. Renew. Sustain. Energy Rev. 16(7), 473–482 (2012)CrossRefGoogle Scholar
  5. 5.
    Tauer, J., Kofler, H., Wintner, E.: Laser-initiated ignition. Laser. Photon. Rev. 4(1), 99–122 (2010)CrossRefGoogle Scholar
  6. 6.
    Williams, G.: Combustion theory, Chap. 8, Addison-Wesley (1985)Google Scholar
  7. 7.
    Mewes, B., Rackemann, N., Kroupa, G.: Development of an analytical laser ignition model, SPC2016-3124995. In: Space Propulsion Conference 2016, Rome (2016)Google Scholar
  8. 8.
    Rosa, M.D., Sender, J., Zimmermann, H., Oschwald, M.: Cryogenic spray ignition at high altitude conditions. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9-12 July (2006)Google Scholar
  9. 9.
    Manfletti, C., Kroupa, G.: Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser. Opt. Express 21, A1126–A1139 (2013)CrossRefGoogle Scholar
  10. 10.
    Hulka, J.: Scaling of performance in liquid propellant rocket engine combustion devices. In: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences, AIAA 2008-5113 (2008)Google Scholar
  11. 11.
    Gröning, S., Hardi, J., Suslov, D., Oschwald, M.: Analysis of phase shift between oscillations of pressure and flame radiation intensity of self-excited combustion instabilities. In: 6th European Conference for Aeronautics and Space Sciences, Krakow, Poland, 29 June–3 July (2015)Google Scholar
  12. 12.
    Huzel, D., Huang, D.: Modern Engineering for design of liquid propellant rocket engines. In: Progress in Astronautics and Aeronautics, AIAA (1992)Google Scholar
  13. 13.
    Manfletti, C.: Laser ignition of an experimental cryogenic reaction and control thruster: ignition energies. J. Propul. Power 30(4), 952–961 (2014)CrossRefGoogle Scholar
  14. 14.
    Dieke, G.H., Crosswhite, H.M.: The ultraviolet bands of OH fundamental data. J. Quant. Spectrosc. Radiat. Transfer 2(2), 97–199 (1962)CrossRefGoogle Scholar
  15. 15.
    Gurliat, O., Schmidt, V., Haidn, O., Oschwald, M.: Ignition of cryogenic H2/LOX sprays. Aerosp. Sci. Technol. 7, 517–531 (2003)CrossRefGoogle Scholar
  16. 16.
    Manfletti, C., Börner, M.: Ignition overpressure in laser ignited reaction and control thrusters. In: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Propulsion and Energy Forum, Cleveland, USA, AIAA2014-3792 (2014)Google Scholar
  17. 17.
    Urbano, A., Selle, L., Staffelbach, G., Cuenot, B., Schmitt, T., Ducruix, S., Candel, S.: Exploration of combustion instability triggering using large eddy simulation of a multiple injector liquid rocket engine. Combust. Flame 169, 129–140 (2016)CrossRefGoogle Scholar

Copyright information

© CEAS 2017

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)Institute of Space PropulsionHardthausenGermany
  2. 2.European Space Agency (ESA)Paris Cedex 15France
  3. 3.Carinthian Tech Research AG (CTR)VillachAustria

Personalised recommendations