CEAS Space Journal

, Volume 9, Issue 3, pp 299–311 | Cite as

Laser ignition of an experimental combustion chamber with a multi-injector configuration at low pressure conditions

  • Michael BörnerEmail author
  • Chiara Manfletti
  • Gerhard Kroupa
  • Michael Oschwald
Original Paper


In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50–80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.


Laser ignition Laser-ablation ignition Laser-plasma ignition Upper stage engine Minimum ignition energy Flame development 



The authors acknowledge funding received from the European Space Agency within the TRP “Laser Ignition Technology.” The authors thank Henrike Jakob, Tobias Messer, Markus Dengler, and Manuel Hofmann for their support at the M3.1 test bench during the test campaign.


  1. 1.
    Oefelein, C.J., Yang, V.: Modeling high-pressure mixing and combustion processes in liquid rocket engines. J. Propuls. Power 14(5), 843–857 (1998)CrossRefGoogle Scholar
  2. 2.
    O’Briant, S.A., Gupta, S.B., Vasu, S.S.: Review: laser ignition for aerospace propulsion. Propul. Power Res. 5(1), 1–21 (2016)CrossRefGoogle Scholar
  3. 3.
    Soller, S., Rackemann, N., Preuss A., Kroupa, G.: Application of laser-ignition systems in liquid rocket engines. In: Space Propulsion Conference 2016 (2016)Google Scholar
  4. 4.
    Sudakov, V.: Laser ignition of LOX-kerosene propellant in liquid rocket engine of “Soyuz” LV. In: Space Propulsion Conference 2016 (2016)Google Scholar
  5. 5.
    Liou, L.C.: Laser ignition in liquid rocket engines. In: AIAA-94-2980, 30th Joint Propulsion Conference and Exhibit (1994). doi: 10.2514/6.1994-2980
  6. 6.
    Kroupa, G., Franz, G., Winkelhofer, E.: Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines. Opt. Eng. (2009). doi: 10.1117/1.3072958 Google Scholar
  7. 7.
    Morsy, M.H.: Review and recent developments of laser ignition for internal combustion engines applications. Renew. Sustain. Energy Rev. 16, 4849–4875 (2012)CrossRefGoogle Scholar
  8. 8.
    Manfletti, C.: Laser ignition of an experimental cryogenic reaction and control thruster: pre-ignition conditions. J. Propul. Power 30(4), 925–933 (2014)CrossRefGoogle Scholar
  9. 9.
    Manfletti, C.: Laser ignition of an experimental cryogenic reaction and control thruster: ignition energies. J. Propul. Power 30(4), 952–961 (2014)CrossRefGoogle Scholar
  10. 10.
    Brieschenk, S., O’Byrne, S., Kleine, H.: Laser-induced plasma ignition studies in a model scramjet engine. Combust. Flame 160(1), 145–148 (2013)CrossRefGoogle Scholar
  11. 11.
    Davis, S.M., Yilmaz, N.: Advances in hypergolic propellants: ignition, hydrazine, and hydrogen peroxide research. Adv. Aerosp. Eng. (2014). doi: 10.1155/2014/729313 Google Scholar
  12. 12.
    Mastorakos, E.: Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35, 57–97 (2009)CrossRefGoogle Scholar
  13. 13.
    Cardin, C., Renou, B., Cabot, G., Boukhalfa, A.M.: Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames: new insight into ignition transition. Combust. Flame 160, 1414–1427 (2013)CrossRefGoogle Scholar
  14. 14.
    Schmidt, V., Sender, J., Oschwald, M.: Simultaneous observation of liquid phase distribution and flame front evolution during the ignition transient of a LOX/GH2-combustor. J. Vis. 4, 365–372 (2001)CrossRefGoogle Scholar
  15. 15.
    Gurliat, O., Schmidt, V., Haidn, O., Oschwald, M.: Ignition of cryogenic H2/LOX sprays. Aerosp. Sci. Technol. 7, 517–531 (2003)CrossRefGoogle Scholar
  16. 16.
    Mewes, B., Rackemann, N., Kroupa, G.: Development of an analytical laser ignition model. In: SPC2016-3124995, Space Propulsion Conference 2016 (2016)Google Scholar
  17. 17.
    Rosen, D.I., Weyl, G.: Laser-induced breakdown in nitrogen and the rare gases at 0.53 and 0.357μm. J. Phys. D Appl. Phys. 20, 1264 (1987)CrossRefGoogle Scholar
  18. 18.
    Lewis, B., von Elbe, G.: Combustion, Flames and Explosions of Gases, 3rd edn. Academic Press Inc., USA (1987)Google Scholar
  19. 19.
    Phuoc, T.X., White, F.P.: An optical and spectroscopic study of laser-induced sparks to determine available ignition energy. Proc. Combust. Inst. 29, 1621–1628 (2002)CrossRefGoogle Scholar
  20. 20.
    Beduneau, J., Kawahara, N., Nakayama, T., Tomita, E., Ikeda, Y.: Laser-induced radical generation and evolution to a self-sustaining flame. Combust. Flame 156, 642–656 (2009)CrossRefGoogle Scholar
  21. 21.
    Kuznetsov, M., Kobelt, S., Grune, J., Jordan, T.: Flammability limits and laminar flame speed of hydrogen-air mixtures at sub-atmospheric pressures. Int. J. Hydrogen Energy 37, 17580–17588 (2012)CrossRefGoogle Scholar
  22. 22.
    Bradley, D., Sheppard, C., Suardjaja, I., Woolley, R.: Fundamentals of high energy spark ignition with lasers. Combust. Flame 138, 55–77 (2004)CrossRefGoogle Scholar
  23. 23.
    Sánchez, A.L., Williams, F.A.: Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energy Combust. Sci. 41, 1–55 (2014)CrossRefGoogle Scholar
  24. 24.
    Manfletti, C.: Ignition overpressure in laser ignited reaction and control thrusters. In: AIAA 2014-3792, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Propulsion and Energy Forum. doi: 10.2514/6.2014-3792
  25. 25.
    Ivancic, B., Mayer, W.: Time- and length scales of combustion in liquid rocket thrust chambers. J. Propul. Power (2002). doi: 10.2514/2.5963 Google Scholar
  26. 26.
    Cuoco, F. Yang, B., Oschwald, M.: Experimental investigation of LOx/H2 and LOx/CH4 sprays and flames. In: 24th International Symposium on Space Technology and Science (2004)Google Scholar
  27. 27.
    Glassman, I., Yetter, R.A.: Combustion, 4th edn. Academic Press, Burlington (2008)Google Scholar
  28. 28.
    Cabalín, L., Laserna, J.: Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation. Spectrochim. Acta B 53, 723–730 (1998)CrossRefGoogle Scholar
  29. 29.
    Bak, M.S., Im, S.-K., Cappelli, M.A.: Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane-air mixtures. Combust Flame 161, 1744–1751 (2014)CrossRefGoogle Scholar
  30. 30.
    Li, X., Yu, X., Fan, R., Yu, Y., Liu, C., Chen, D.: Laser ablation ignition of premixed methane and oxygen-enriched air mixtures using a tantalum target. Opt. Lett. 39, 139–141 (2014)CrossRefGoogle Scholar
  31. 31.
    Chen, Z., Bleiner, D., Bogaerts, A.: Effect of ambient pressure on laser ablation and plume expansion dynamics: a numerical simulation, J. Appl. Phys. 99(6), 063304 (2006). doi: 10.1063/1.2182078
  32. 32.
    Kumakawa, A., Kusaka, K., Sato, M., Hasegawa, K., Takahashi, H.: Experimental study on a laser ignited thruster made of Si3N4. In: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2004). doi: 10.2514/6.2004-4004
  33. 33.
    Hasegawa, K., Sato, M.: Laser Ignition Characteristics of GOX/GH2 and GOX/GCH4 Propellants. In: AIAA 2003-4906, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2003). doi: 10.2514/6.2003-4906
  34. 34.
    Palanco, S., Marino, S., Gabás, M., Bijani, S., Ayala, L., Ramos-Barrado, J.: Micro- and nanoparticle generation during nanosecond laser ablation: correlation between mass and optical emissions. Opt. Express 22, 3991–3999 (2014)CrossRefGoogle Scholar
  35. 35.
    Beduneau, J.-L., Ikeda, Y.: Spatial characterization of laser-induced sparks in air. J. Quant. Spectrosc Radiat. Transfer 84, 123–139 (2004)CrossRefGoogle Scholar
  36. 36.
    Chen, Y.-L., Lewis, J., Parigger, C.: Spatial and temporal profiles of pulsed laser-induced air plasma emissions. J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000)CrossRefGoogle Scholar
  37. 37.
    Dumitrache, C., Rath, J., Yalin, A.P.: High power spark delivery system using hollow core kagome lattice fibers. Materials 7, 5700–5710 (2014)CrossRefGoogle Scholar
  38. 38.
    Matsuura, Y.: Hollow optical fibers for high-power laser transmission. In: LIC7-1, Laser ignition Conference 2014, Yokohama (2014)Google Scholar
  39. 39.
    Morsy, M.H.: Review and recent developments of laser ignition for internal combustion engines applications. Renew. Sustain. Energy Rev. 16, 4849–4875 (2012)CrossRefGoogle Scholar

Copyright information

© CEAS 2017

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)Institute of Space PropulsionHardthausenGermany
  2. 2.European Space Agency (ESA)Paris Cedex 15France
  3. 3.Carinthian Tech Research AG (CTR)VillachAustria

Personalised recommendations