Skip to main content
Log in

Sea-level transitioning dual bell nozzles

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

A detailed study was conducted to evaluate the impact of sea-level transitioning dual bell nozzles on the payload mass delivered into geostationary transfer orbit by Ariane 5 ECA. For this purpose, a multitude of Vulcain 2 and Vulcain 2.1 nozzle extension contours were designed. The two variable parameters were the position of the wall inflection and the constant wall pressure of the nozzle extension. Accounting for the two variable parameters, an approved analytical method was applied to predict the impact of the dual bell nozzles on the payload mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(A_\mathrm {inf}\) :

Wall inflection cross-sectional area

\(A_\mathrm {e}\) :

Nozzle exit area

\(A_\mathrm {th}\) :

Nozzle throat area

F :

Thrust

\(I_\mathrm {sp,vac}\) :

Vacuum specific impulse

\(I_\mathrm {sp,vac+}\) :

Vacuum specific impulse gain

\(L_\mathrm {inf}\) :

Wall inflection position

\(L_\mathrm {tot}\) :

Total supersonic nozzle length

R :

Radial coordinate

\(R_\mathrm {th}\) :

Nozzle throat radius

X :

Axial coordinate

\(h_\mathrm {tr}\) :

Mode transition altitude

\(m_\mathrm {noz}\) :

Nozzle mass

\(m_\mathrm {noz+}\) :

Nozzle mass increase

\(m_\mathrm {+}\) :

Engine mass increase

\(m_\mathrm {PL+}\) :

Payload gain

\(p_\mathrm {a}\) :

Ambient pressure

\(p_\mathrm {cc}\) :

Combustion chamber pressure

\(p_\mathrm {w}\) :

Wall pressure

\(p_\mathrm {wext}\) :

Dual bell extension wall pressure

\(\alpha _\mathrm {e}\) :

Wall exit angle

\(\alpha _\mathrm {inf}\) :

Wall inflection angle

\(\epsilon\) :

Area ratio, \(A/A_\mathrm {th}\)

\(\epsilon _\mathrm {inf}\) :

Base nozzle area ratio, \(A_\mathrm {inf}/A_\mathrm {th}\)

\(\epsilon _\mathrm {e}\) :

Nozzle exit area ratio, \(A_\mathrm {e}/A_\mathrm {th}\)

\(\Delta F\) :

Thrust increment

\(\Delta I_\mathrm {sp}\) :

Specific impulse increment

NPR :

Nozzle pressure ratio, \(p_\mathrm {cc}/p_\mathrm {a}\)

References

  1. Stark, R.: Beitrag zum Verständnis der Strömungsablösung in Raketendüsen, Ph.D. Thesis, RWTH Aachen, Germany (2010)

  2. Génin, C.: Experimental study of flow behavior and thermal loads in dual bell nozzles, Ph.D. Thesis, Université de Valenciennes, France (2010)

  3. Chalom, J.A.: Nozzle, US Patent, 2,583,726, patented 1952, application 1949, in France (1948)

  4. Foster, C., Cowles, F.: Experimental study of gas-flow separation in overexpanded exhaust nozzles for rocket motors, Jet Propulsion Laboratory, Progress Report 4-103 (1949)

  5. Fischer, E.: Nozzle construction, US Patent, 3,352,495 (1967)

  6. Horn, M., Fisher, S.: Dual-bell altitude compensating nozzle, Rocketdyne Division, NASA-CR-194719 (1994)

  7. Haidinger, F., Goergen, J., Haeseler, D.: Experimental and analytical design verification of the dual-bell concept, 34th AIAA Joint Propulsion Conference, 17–18th of July, Huntsville, AL, AIAA 98-3368 (1998)

  8. Manski, D., Hagemann, G., Frey, M., Frenken, G.: Optimisation of dual mode rocket engine nozzles for SSTO vehicles, 49th International Astronautical Congress, 9.28.-10.02, Melbourne, Australia, IAF-98-S3.08 (1998)

  9. Kumakawa, A., Tamura, H., Niino, M., Nosaka, M., Yamada, H., Kanmuri, A., Konno, A, Atsumi, M.: Propulsion Research for Rocket SSTOS at NAL/KRC, 35th AIAA Joint Propulsion Conference, 20-24th of June, Los Angeles, CA, AIAA 99-2337 (1999)

  10. Kusaka, K., Kumakawa, A., Niino, M., Konno, A, Atsumi, M.: Experimental study on extendible and dual-bell nozzles under high altitude conditions, 36th AIAA Joint Propulsion Conference, 16–19th of July, Huntsville, AL, AIAA 2000-3303 (2000)

  11. Miyazawa, M., Takeuchi, S., Takahashi, M.: Flight performance of dual-bell nozzles, 40th AIAA Aerospace Sciences Meeting & Exhibit, 14–17th of January, Reno, NV, AIAA 2002-686 (2002)

  12. Immich, H., Caporicci, M.: FESTIP Technology developments in liquid rocket propulsion for reusable launch vehicles, 32nd AIAA Joint Propulsion Conference, 1–3rd of July, Lake Buena Vista, FL, AIAA 96-3113 (1996)

  13. Immich, H., Caporicci, M.: Status of the FESTIP Rocket Propulsion Technology Programme, 33rd AIAA Joint Propulsion Conference, 6–9th of July, Seattle, WA, AIAA97-3311 (1997)

  14. Hagemann, G., Terhardt, M., Haeseler, D., Frey, M.: Experimental and analytical design verification of the dual-bell concept, 36th AIAA Joint Propulsion Conference, 16–19th of July, Huntsville, AL, AIAA 2000-3778 (2000)

  15. Kuczera, H., Sacher, P., Dujarric, C.: FESTIP system study—an overview, 7th AIAA Space Plane and Hypersonic Systems and Technology Conference, 18–22th of November, Norfolk, VA, A9710801, (1996). doi:10.2514/6.1996-6004

  16. Hagemann, G., Frey, M., Manski, D., A Critical assessment of dual-bell nozzles, 33rd AIAA Joint Propulsion Conference, 6–9th of July, Seattle, WA, AIAA 97-3299 (1997)

  17. Dumnov, G., Nikulin, G., Ponomarev, N., Advanced rocket engine nozzles, 32nd AIAA Joint Propulsion Conference, 1–3rd of July, Lake Buena Vista, FL, AIAA 96-3221 (1996)

  18. Kimura, T., Niu, K., Yonezawa, K., Tsujimoto, Y., Ishizaka, K.: Experimental and analytical study for design of dual-bell nozzles, 45th AIAA Joint Propulsion Conference, 2nd–5th August, Denver, CO, AIAA 2009-5149 (2009)

  19. Nürnberger-Génin, C., Stark, R.: Flow transition in dual bell nozzles. Shock Waves 19(3), 265–270 (2009)

    Article  Google Scholar 

  20. Tomita, T., Takahashi, M., Sasaki, M., Tamura, H.: Investigation on characteristics of conventional-nozzle-based altitude compensating nozzles by cold-flow tests, 42nd AIAA Joint Propulsion Conference, 9–12th July, Sacramento, CA, AIAA 2006-4375 (2006)

  21. Reijasse, P., Coponet, D., Luyssen, J-M., Bar, V., Palerm, S., Oswald, J., Amouroux, F., Robinet, J.-C., Kuszla, P.: Wall pressure and thrust of a dual bell nozzle in a cold gas facility, 3rd European Conference for Aerospace Sciences (EUCASS), 6–9th July, Versailles, France (2009)

  22. Nürnberger-Génin, C., Stark, R.: Experimental study on flow transition in dual bell nozzles. J. Propuls. Power 26(3), 497–502 (2010)

    Article  Google Scholar 

  23. Verma, S., Stark, R., Nürnberger-Génin, C., Haidn, O.: Cold-gas experiments to study the flow separation characteristics of a dual-bell nozzle during its transition modes. Shock Waves 20(3), 191–203 (2010)

    Article  Google Scholar 

  24. Génin, C., Stark, R., Influence of the test environment on the transition of dual-bell nozzles, 28th ISTS Special Issue, Vol. 10, pp 49–53 (2012)

  25. Génin, C., Stark, R., Haidn, O., Quering, K., Frey, M.: Experimental and Numerical study of dual bell nozzle flow. Prog. Flight Phys. 5, 363–376 (2013)

    Article  Google Scholar 

  26. Verma, S., Stark, R., Haidn, O.: Effect of ambient pressure fluctuations on dual-bell transition behavior. J. Propuls. Power 30(5), 11921198 (2014)

    Article  Google Scholar 

  27. Génin, C., Stark, R.: Side loads in subscale dual bell nozzles. J. Propuls. Power 27(4), 828–837 (2011)

    Article  Google Scholar 

  28. Génin, C., Gernoth, A., Stark, R.: Experimental and numerical study of heat flux in dual bell nozzles. J. Propuls. Power 29(1), 21–26 (2013)

    Article  Google Scholar 

  29. Onofri, M., Nasuti, F., Martelli, E.: Analysis of the transition process in dual-bell nozzles, 4th International Conference on Launcher Technology, 3rd–6th December, Lige, Belgium, Proceedings (2002)

  30. Wong, H., Schwane, R.: Numerical investigation of transition in flow separation in a dual-bell nozzle, 4th International Conference on Launcher Technology, 3rd–6th December, Lige, Belgium, Proceedings (2002)

  31. Karl, S., Hannemann, K.: Numerical investigation of transient flow phenomena in dual-bell nozzles, 6th International Symposium on Launcher Technologies, 8–11th November. Munich, Germany, Proceedings (2005)

  32. Martelli, E., Nasuti, F., Onofri, M.: Effect of the wall shape and real gas properties on dual-bell nozzle flowfield, 41st AIAA Joint Propulsion Conference, 10–13th July, Tuscon, AZ, AIAA 2005-3943 (2005)

  33. Nasuti, F., Onofri, M., Martelli, E.: Role of wall shape on the transition in axisymmetric dual-bell nozzles. J. Propuls. Power 21(2), 243–250 (2005)

    Article  Google Scholar 

  34. Martelli, E., Nasuti, F., Onofri, M.: Numerical parametric analysis of dual-bell nozzle flows. AIAA J. 45(3), 640–650 (2007)

    Article  Google Scholar 

  35. Martelli, E., Nasuti, F., Onofri, M.: Film cooling effect on dual-bell nozzle flow transition, 45th AIAA Joint Propulsion Conference, 2nd–5th August, Denver, CO, AIAA 2009-4953 (2009)

  36. Perigo, D., Schwane, R., Wong, H.: A numerical comparison of the flow in conventional and dual-bell nozzles in the presence of an unsteady external pressure environment, 39th AIAA Joint Propulsion Conference, 21st–23rd July, Huntsville, AL, AIAA 2003-4731 (2003)

  37. Proschanka, D., Koichi, Y., Tsukuda, H., Araka, K., Tsujimoto, Y., Kimura, T., Yokota, K.: Jet oscillation at low-altitude operation mode in dual-bell nozzle. J. Propuls. Power 28(5), 1071–1080 (2012)

    Article  Google Scholar 

  38. Hagemann, G., Immich, H., Van Nguyen, T., Dumnov, G.: Advanced rocket nozzles. J. Propuls. Power 14(5), 620–634 (1998)

    Article  Google Scholar 

  39. Hagemann, G., Immich, H., Nguyen, T., Dumnov, G.: Rocket engine nozzle concepts, progress in astronautics and aeronautics, liquid rocket thrust chambers: aspects of modeling, analysis, and design. edited by Yang V. et al., Vol. 200, Chapter 12, pp. 437-467 (2004)

  40. Stark, R., Génin, C., Schneider, D., Fromm, C.: Ariane 5 performance optimization using dual bell nozzle extension. J. Spacecr. Rockets 53(4), 743–750 (2016)

    Article  Google Scholar 

  41. Sandwich Nozzles, Volvo Aero, Fact Sheet 150-T-506-0506-EN-1-PROFIL

Download references

Acknowledgements

Financial support has been provided by the German Research Foundation (Deutsche Forschungsgemeinschaft) in the framework of the Sonderforschungsbereich Transregio 40 (SFB-TRR40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Stark.

Additional information

This paper is based on a presentation at the Space Propulsion 2016 conference, 2–6 May, 2016, Rome, Italy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stark, R., Génin, C. Sea-level transitioning dual bell nozzles. CEAS Space J 9, 279–287 (2017). https://doi.org/10.1007/s12567-017-0154-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-017-0154-8

Keywords

Navigation