CEAS Space Journal

, Volume 9, Issue 4, pp 441–449 | Cite as

Complex optical interference filters with stress compensation for space applications

  • Thomas Begou
  • Hélène Krol
  • Dragan Stojcevski
  • Fabien Lemarchand
  • Michel Lequime
  • Catherine Grezes-Besset
  • Julien LumeauEmail author
Original Paper


We present hereafter a study of complex bandpass optical interference filters with central wavelengths ranging in blue region or in the near infrared. For these applications, the required functions are particularly complex as they must present a very narrow bandwidth as well as a high level of rejection over a broad spectral range. Moreover, these components must have a good flatness meaning that the stress induced by the different layers has to be taken in account in the filter design. We present a thorough study of these filters including their design, fabrication using Plasma Assisted Reactive Magnetron Sputtering (PARMS) and characterization. Excellent agreement between experimental and theoretical spectral performances associated with a final sag of 326 and 13 nm, and uniformity from −0.05 to 0.10 and −0.10 to 0.20% are demonstrated for the two manufactured filters.


Optical interference filters Thin films Narrow bandpass filters Fabrication technology 



This work was performed within an ESA redevelopment contract with the financial support of the SODERN Company. The Perkin Elmer Lambda 1050, the ZYGO NewView 7300 and BUHLER Optics HELIOS machine were acquired within the framework of the Espace Photonique facility and funded by the financial support of the French Department of Industry, CNRS, the local administrations (Provence-Alpes Côte d’Azur Regional council, Bouche du Rhône council, town of Marseille), and the European Community. The authors acknowledges the CONCEPT team of the Institut Fresnel for the SALSA measurement of the 3MI-3 filter.


  1. 1.
    Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J., Dickinson, R.: The role of satellite remote sensing in climate change studies. Nature Clim. Change 3, 1001 (2013)CrossRefGoogle Scholar
  2. 2.
    Manolis, I., Bézy, J.-L., Meynart, R., Porciani, M., Loiselet, M., Mason, G., Labate, D., Bruno, U., De Vidi, R.: The 3MI instrument on the METOP second generation, ICSO 2014 Proceedings (2014)Google Scholar
  3. 3.
    Hawkins, G., Sherwood, R., Djotni, K.: Mid-infrared filters for astronomical and remote sensing instrumentation. Proc. SPIE 7101, 710114 (2008)CrossRefGoogle Scholar
  4. 4.
    Kurokawa, A., Nakajima, Y., Kimura, S., Atake, H., Okamura, Y., Tanaka, K., Tsuida, S., Ichida, K., Amano, T.: High-precision narrow-band optical filters for global observation, Proceed. Int. Confere Space. Optic. Syst. Appl. (ICSO) (2012)Google Scholar
  5. 5.
    Krol, H., Chazallet, F., Archer, J., Kirchgessner, L., Torricini, D., Grèzes-Besset, C. Narrow-band filters for ocean colour imager, Proceed. Int. Confer. Space Optics (ICSO) (2008)Google Scholar
  6. 6.
    Krol, H., Grèzes-Besset, C., Torricini, D., Stojcevski, D.: High performances optical coatings with dual ion beam sputtering technique. Advances in optical thin films V. Proceed. SPIE 9627, 96270L (2015)CrossRefGoogle Scholar
  7. 7.
    Amotchina, T., Trubetskov, M., Tikhonravov, A., Kruschwitz, J.: Optical design: advanced thin-film software techniques improve design-to-fabrication workflow. Laser Focus World, 16/01/2015 (2015)Google Scholar
  8. 8.
    Zöller, A., Boos, M., Hagedorn, H., Romanov, B.: Computer simulation of coating processes with monochromatic monitoring, Advances in Optical Thin Films III. Proceed. SPIE 7101, 71010G (2008)CrossRefGoogle Scholar
  9. 9.
    Scherer, M., Pistner, J., Lehnert, W.: UV- and VIS filter coatings by plasma assisted reactive magnetron sputtering (PARMS), OIC 2010 Proceedings (2010)Google Scholar
  10. 10.
    Zoeller, A., Hagedorn, H., Klug, W., Schmitt, C.: High accurate in situ optical thickness monitoring, OIC 2004 Proceedings (2004)Google Scholar
  11. 11.
    Begou, T., Lemarchand, F., Lumeau, J.: Advanced optical interference filters based on metal and dielectric layers. Opt. Express 24(18), 20925–20937 (2016)CrossRefGoogle Scholar
  12. 12.
    Bonnand, R., Degallaix, J., Flaminio, R., Giacobone, L., Lagrange, B., Marion, F., Michel, C., Mours, B., Mugnier, P., Pacaud, E., Pinard, L.: Large mirror surface control by corrective coating. Class. Quantum Gravity 30, 155014 (2013)CrossRefGoogle Scholar
  13. 13.
    Scheuerman, R.: Deformation of optical surfaces by film stress. J. Vac. Sci. Technol. 6, 145 (1969)CrossRefGoogle Scholar
  14. 14.
    Stoney, G.: The tension of metallic films deposited by electrolysis. Proceed R Soc Lond Ser A Math Phys Eng Sci 82, 172–175 (1909)CrossRefGoogle Scholar
  15. 15.
    Lemarquis, F.: Athermal compensation of the stress-induced surface deflection of optical coatings using iso-admittance layers. Appl. Opt. 53, A229–A236 (2014)CrossRefGoogle Scholar
  16. 16.
    Begou, T.C., Hecquet, .C, Lemarchand, F., Lequime, M.: All dielectric broadband mirror for Fabry-Perot interferometer. In: Tilsch M, Ristau D (eds) Optical interference coatings postdeadline. OSA Technical Digest (online) (Optical Society of America, 2013), paper PTE.6 (2013)Google Scholar
  17. 17.
    de Denus-Baillargeon, M.-M., Schmitt, T., Larouche, S., Martinu, L.: Design and fabrication of stress-compensated optical coatings: Fabry-Perot filters for astronomical applications. Appl. Opt. 53, 2616–2624 (2014)CrossRefGoogle Scholar
  18. 18.
    Amotchkina, T., Trubetskov, M.K., Pervak, Y., Veisz, L., Pervak, V.: Stress compensation with antireflection coatings for ultrafast laser applications: from theory to practice. Opt. Express 22, 30387–30393 (2014)CrossRefGoogle Scholar
  19. 19.
    Abel-Tiberini, L., Lemarquis, F., Lequime, M.: Dedicated spectrophotometer for localized transmittance and reflectance measurements. Appl. Opt. 45(7), 1386–1391 (2006)CrossRefGoogle Scholar
  20. 20.
    Gao, L., Lemarchand, F., Lequime, M.: Reverse engineering from spectrophotometric measurements: performances and efficiency of different optimization algorithms. Appl. Phys. A 108(4), 877–889 (2012)CrossRefGoogle Scholar
  21. 21.
    Bauer, T., Lappschies, M., Schallenberg, U., Jakobs, S.: Manufacturing and characterizing of all-dielectric band-pass filters for the short-wave infrared region. Proc. SPIE 8168, Advances in Optical Thin Films IV, 81680Z (4 October 2011)Google Scholar
  22. 22.
    Tikhonravov, A.V., Trubetskov, M.K., DeBell, G.W.: Optical coating design approaches based on the needle optimization technique. Appl. Opt. 46, 704–710 (2007)CrossRefGoogle Scholar
  23. 23.
    Begou, T., Lumeau, J.: Mechanical stress in dielectric mirrors: towards a fine control of the flatness. Proceedings of international conference on space optics, Biarritz, France, paper 71 (2016)Google Scholar
  24. 24.
    Willey, R.R.: Simulation comparisons of monitoring strategies in narrow bandpass filters and antireflection coatings. Appl. Opt. 53, A27–A34 (2014)CrossRefGoogle Scholar
  25. 25.
    Liukaityte, S., Lequime, M., Zerrad, M., Begou, T., Amra, C.: Broadband spectral transmittance measurements of complex thin-film filters with optical densities of up to 12. Opt. Lett. 40, 3225–3228 (2015)CrossRefGoogle Scholar
  26. 26.
    Lequime, M., Liukaityte, S., Zerrad, M., Amra, C.: Ultra-wide-range measurements of thin-film filter optical density over the visible and near-infrared spectrum. Opt. Express. 23, 26863–26878 (2015)CrossRefGoogle Scholar

Copyright information

© CEAS 2017

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, Centrale MarseilleInstitut FresnelMarseilleFrance
  2. 2.CILAS Etablissement de MarseilleAubagneFrance

Personalised recommendations