Skip to main content

Advertisement

Log in

A critical review of nanotechnologies for composite aerospace structures

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The past decade extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Integration of nano-particles into fiber composites concludes to multi-scale reinforced composites and has opened a new wide range of multi-functional materials in industry. In this direction, a variety of carbon based nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. This interest originates from several industrial applications needs that request the development of new multi-functional materials which combine enhanced mechanical, electrical and thermal properties. In this work, an attempt is performed to review the most representative processes and related performances reported in literature and the experience obtained on nano-enabling technologies of fiber composite materials. This review focuses on the two main composite manufacturing technologies used by the aerospace industry; Prepreg/Autoclave and Resin Transfer technologies. It addresses several approaches for nano-enabling of composites for these two routes and reports latest achieved results focusing on performance of nano-enabled fiber reinforced composites extracted from literature. Finally, this review work identifies the gap between available nano-technology integration routes and the established industrial composite manufacturing techniques and the challenges to increase the Technology Readiness Level to reach the demands for aerospace industry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

CFRP:

Carbon fiber reinforced polymer

CNF:

Carbon nanofiber

CNT:

Carbon nanotubes

CTE:

Coefficient of thermal expansion

EMI:

Electromagnetic interference

FRP:

Fiber reinforced polymer

GFRP:

Glass fiber reinforced polymer

GNP:

Graphene nanoplatelets

MWCNT:

Multiwall carbon nanotubes

ne (prefix):

Nano-enabled

PVA:

Polyvinyl alcohol

PZT:

Lead zirconate titanate

RT(M):

Resin transfer (molding)

SHM:

Structural health monitoring

TRL:

Technology readiness level

VARTM:

Vacuum assisted resin transfer molding

References

  1. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W., Schulte, K.: Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos. Part A Appl. Sci. Manuf. 36(11), 1525–1535 (2005)

    Article  Google Scholar 

  2. Baltopoulos, A., Polydorides, N., Pambaguian, L., Vavouliotis, A., Kostopoulos, V.: Exploiting carbon nanotube networks for damage assessment of fiber reinforced composites. Compos. Part B Eng. 76, 149–158 (2015)

    Article  Google Scholar 

  3. Mahrholz, T., Mosch, J., Röstermundt, D., Riedel, U., Herbeck, L., & Sinapius, M.: Fibre-reinforced nanocomposites for spacecraft structures-manufacturing, characterisation and application. In: Spacecraft Structures, Materials and Mechanical Testing 2005, vol. 581, p.168 (2005)

  4. Kostopoulos, E.V., Baltopoulos A., Vavouliotis A., Sotiriadis G., Kostagiannakopoulou, F. C., Masouras, A.: NANOTECHNOLOGIES FOR STRUCTURAL COMPOSITE MATERIALS Review of latest research developments and open challenges towards application. In: 8th ESA Micro-Nanotechnology Round Table, ESA/ESTEC, Noordwijk, pp. 1–32 (2012)

  5. Paipetis, A., Kostopoulos, V., Vavouliotis, A., Karapappas, P., Tsotra, P., Jaillet, C., Alexopoulos, N. D., Poulin, P., Grishchuk, S., Schledjewski, R., Giliopoulos, D., Triantafyllidis, K., Gournis, D., Theodosiou, T. C., Saravanos, D. A., Barkoula, N.-M.: Carbon Nanotube Enhanced Aerospace Composite Materials. Springer (2013)

  6. Kostopoulos, V., Vavouliotis, A., Karapappas, P., Tsotra, P., Paipetis, A.: Damage monitoring of carbon fiber reinforced laminates using resistance measurements. Improving sensitivity using carbon nanotube doped epoxy matrix system. J. Intell. Mater. Syst. Struct. 20(9), 1025–1034 (2009)

    Article  Google Scholar 

  7. Qian, H., Greenhalgh, E.S., Shaffer, M.S.P., Bismarck, A.: Carbon nanotube-based hierarchical composites: a review. J. Mater. Chem. 20(23), 4751 (2010)

    Article  Google Scholar 

  8. Baur, J., Silverman, E.: Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull. 32(04), 328–334 (2007)

    Article  Google Scholar 

  9. Winkless, L., Cuenat, A.: Nano launches into space. Mater. Today 14(1–2), 55 (2011)

    Article  Google Scholar 

  10. Composite Materials Handbook. Polymer Matrix Composites Materials Usage, Design, and Analysis (MIL-HDBK-17-3F), vol. 3. Department of Defense, United States of America (2002)

  11. Structural Materials Handbook—Part 4: Integrity Control, Verification, Guidelines and Manufacturing (ECSS-E-HB-32-20 Part 4A), 20 March 2011. Noordwijk, The Netherlands: ESA Requirements and Standards Division, ESTEC (2011)

  12. Siddiqui, N., Li, C., Yu, Y., Ma, P., Kim, J.: Prepregging and mechanical properties of Cnt-cfrp hybrid composites. In: 17th Int. Conf. Compos. Mater. (2009)

  13. Warrier, A., Godara, A., Rochez, O., Mezzo, L., Luizi, F., Gorbatikh, L., Lomov, S.V., VanVuure, A.W., Verpoest, I.: The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Compos. Part A Appl. Sci. Manuf. 41(4), 532–538 (2010)

    Article  Google Scholar 

  14. Joshi, S.C., Dikshit, V.: Enhancing interlaminar fracture characteristics of woven CFRP prepreg composites through CNT dispersion. J. Compos. Mater. 46(6), 665–675 (2012)

    Article  Google Scholar 

  15. White, K.L., Sue, H.-J.: Delamination toughness of fiber-reinforced composites containing a carbon nanotube/polyamide-12 epoxy thin film interlayer. Polymer (Guildf) 53(1), 37–42 (2012)

    Article  Google Scholar 

  16. Hoisington, Mark A., Seferis, James C.: Toughened Plastics I, vol. 233. American Chemical Society, Washington, DC (1993)

    Book  Google Scholar 

  17. Zhang, H., Liu, Y., Kuwata, M., Bilotti, E., Peijs, T.: Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos. Part A Appl. Sci. Manuf. 70, 102–110 (2015)

    Article  Google Scholar 

  18. Drakonakis, V. M.: CNT Reinforced Epoxy Foamed And Electrospun Nano-fiber Interlayer Systems For Manufacturing Lighter And Stronger Featherweight Composites. Industrial & Manufacturing Engineering, 01 Jan 2012

  19. Li, Y., Hori, N., Arai, M., Hu, N., Liu, Y., Fukunaga, H.: Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Compos. Part A Appl. Sci. Manuf. 40(12), 2004–2012 (2009)

    Article  Google Scholar 

  20. Zhao, D., Liu, T., Zhang, M., Liang, R., Wang, B.: Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures. Smart Mater. Struct. 21(11), 115008 (2012)

    Article  Google Scholar 

  21. Garcia, E.J., Wardle, B.L., John Hart, A.: Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 39(6), 1065–1070 (2008)

    Article  Google Scholar 

  22. Shin, Y.C., Novin, E., Kim, H.: Electrical and thermal conductivities of carbon fiber composites with high concentrations of carbon nanotubes. Int. J. Precis. Eng. Manuf. 16(3), 465–470 (2015)

    Article  Google Scholar 

  23. Reia da Costa, E.F., Skordos, A.A., Partridge, I.K., Rezai, A.: RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites. Compos. Part A Appl. Sci. Manuf. 43(4), 593–602 (2012)

    Article  Google Scholar 

  24. An, Q., Rider, A. N., Thostenson, E. T.: Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50(11), 4130–4143 (2012). http://dx.doi.org/10.1016/j.carbon.2012.04.061

    Article  Google Scholar 

  25. Zhao, Z.-G., Ci, L.-J., Cheng, H.-M., Bai, J.-B.: The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers. Carbon N. Y. 43(3), 663–665 (2005)

    Article  Google Scholar 

  26. Gao, L., Chou, T.-W., Thostenson, E.T., Godara, A., Zhang, Z., Mezzo, L.: Highly conductive polymer composites based on controlled agglomeration of carbon nanotubes. Carbon N. Y. 48(9), 2649–2651 (2010)

    Article  Google Scholar 

  27. Nanothinx. Raw CNT in powder form. [Online]. Available: http://www.nanothinx.com/raw-cnts-in-powder-form/

  28. Nanocyl, S.A.: Small size and high aspect ratio MWCNTs—Nanocyl NC 7000. [Online]. Available: http://www.nanocyl.com/en/Products-Solutions/Products/Nanocyl-NC-7000-Thin-Multiwall-Carbon-Nanotubes

  29. Bordere, S., Corpart, J., El Bounia, N., Gaillard, P., Passade Boupat, N., Piccione, P., Plée, D.: Industrial production and applications of carbon nanotubes. Arkema (2007). http://www.graphistrength.com

  30. Future Carbon GmbH. Carbon nanotube refined polymer systems—CarboForce. [Online]. Available: http://www.future-carbon.de/fileadmin/user_upload/Flyer_CarboForce_v01_14_EN.pdf

  31. Nanocyl, S.A.: Epoxy resin systems for structural conductivity, strength and durability, and weight reduction for lighter, fiber-reinforced composite materials used in aerospace—EPOCYL. [Online]. Available: http://www.nanocyl.com/en/Products-Solutions/Products/EPOCYL2

  32. Nanocyl, S.A.: New generation of sizing agent for improving the mechanical properties in composite materials—SIZICYL. [Online]. Available: http://www.nanocyl.com/en/Products-Solutions/Products/SIZICYL

  33. Veedu, V.P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., Ajayan, P.M., Ghasemi-Nejhad, M.N.: Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 5(6), 457–462 (2006)

    Article  Google Scholar 

  34. Garcia, E., Wardle, B., Johnhart, A., Yamamoto, N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in Situ. Compos. Sci. Technol. 68(9), 2034–2041 (2008)

    Article  Google Scholar 

  35. NanoLab Inc.: Carbon Nanotube Suspensions. [Online]. Available: http://www.nano-lab.com/nanotubesuspensions.html

  36. Arkema Inc.: CNT Solid Hydrosolluble formulations—Graphistrength®. [Online]. Available: http://www.graphistrength.com/export/sites/graphistrength/.content/medias/downloads/literature/Graphistrength-C-W2-45-English-Dec2013.pdf

  37. NanoLab Inc.: Carbon Nanotube Veil. [Online]. Available: http://www.nano-lab.com/isg-product.html

  38. Latko, P., Kozera, R., Salinier, A., Boczkowska, A.: Non-woven veils manufactured from polyamides doped with carbon nanotubes. Fibres Text. East. Eur. 21(6), 45–49 (2013)

  39. Nanocomp Technologies Inc.: Sheet, tapes and conductors and yarns comprised of high concentrations of CNT fibers. [Online]. Available: http://www.nanocomptech.com/aerospace-and-defense

  40. Boyd, J.: New nanotech fiber: Robust handling, shocking performance. [Online]. Available: http://news.rice.edu/2013/01/10/new-nanotech-fiber-robust-handling-shocking-performance-2/

  41. Nanotech Labs Inc.: Buckypapers. [Online]. Available: http://www.nanotechlabs.com/Buckypaper.html

  42. Wang, Z., Liang, Z., Wang, B., Zhang, C., Kramer, L.: Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos. Part A Appl. Sci. Manuf. 35(10), 1225–1232 (2004)

    Article  Google Scholar 

  43. Buckeye Composites. [Online]. Available: http://www.buckeyecomposites.com/

  44. Baltopoulos, A., Kostopoulos, V., Vavouliotis, A., Eleftheriou, S.: Development of Hybrid Buckypaper (HBP) Structures and multi-functional assessment of composites incorporating HBP. In: 14th European Conference on Composite Materials, ECCM 14 (2010)

  45. Cheaptubes Inc.: Graphene Nanoplalets and Graphene Films. [Online]. Available: http://cheaptubes.com/graphene-nanoplatelets.htm

  46. DIRECTA PLUS S.p.A.: G + Technology, Graphene Products. [Online]. Available: http://www.directa-plus.com/products/

  47. Saint Gobain, Boron Nitride Thermal Fillers—CarboTherm. [Online]. Available: http://www.bn.saint-gobain.com/carbotherm-thermal-fillers.aspx

  48. Morgan Advanced Materials. Lead Zirconate Titanate (PZT). [Online]. Available: http://www.morgantechnicalceramics.com/materials/lead-zirconate-titanate-pzt

  49. Hu, K., Kulkarni, D.D., Choi, I., Tsukruk, V.V.: Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39(11), 1934–1972 (2014)

    Article  Google Scholar 

  50. Yue, L., Pircheraghi, G., Monemian, S.A., Manas-Zloczower, I.: Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon N. Y. 78, 268–278 (2014)

    Article  Google Scholar 

  51. Teng, C.-C., Ma, C.-C.M., Chiou, K.-C., Lee, T.-M., Shih, Y.-F.: Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater. Chem. Phys. 126(3), 722–728 (2011)

    Article  Google Scholar 

  52. Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater. Sci. Eng. A 452–453, 657–664 (2007)

    Article  Google Scholar 

  53. Sánchez, M., Campo, M., Jiménez-Suárez, A., Ureña, A.: Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Compos. Part B Eng. 45(1), 1613–1619 (2013)

    Article  Google Scholar 

  54. Zhou, Y., Pervin, F., Rangari, V.K., Jeelani, S.: Fabrication and evaluation of carbon nano fiber filled carbon/epoxy composite. Mater. Sci. Eng. A 426(1–2), 221–228 (2006)

    Article  Google Scholar 

  55. Wichmann, M.H.G., Sumfleth, J., Gojny, F.H., Quaresimin, M., Fiedler, B., Schulte, K.: Glass-fibre-reinforced composites with enhanced mechanical and electrical properties—benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 73(16), 2346–2359 (2006)

    Article  Google Scholar 

  56. Fang, C., Wang, J., Zhang, T.: Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent. Appl. Surf. Sci. 321, 1–9 (2014)

    Article  Google Scholar 

  57. Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., Paipetis, A.: Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J. Compos. Mater. 43(9), 977–985 (2009)

    Article  Google Scholar 

  58. Kostopoulos, V., Tsotra, P., Karapappas, P., Tsantzalis, S., Vavouliotis, A., Loutas, T.H., Paipetis, A., Friedrich, K., Tanimoto, T.: Mode I interlaminar fracture of CNF or/and PZT doped CFRPs via acoustic emission monitoring. Compos. Sci. Technol. 67(5), 822–828 (2007)

    Article  Google Scholar 

  59. Siddiqui, N. A., Woo, R. S. C., Kim, J.-K., Leung, C. C. K., Munir, A.: Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos. Part A Appl. Sci. Manuf. 38(2), 449–460 (2007). doi:10.1016/j.compositesa.2006.03.001

  60. Ashrafi, B., Guan, J., Mirjalili, V., Zhang, Y., Chun, L., Hubert, P., Simardb, B., Kingstonb, C.T., Bourneb, O., Johnstona, A. (2011) Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Compos. Sci. Technol. 71(13), 1569–1578. doi:10.1016/j.compscitech.2011.06.015

  61. Baltopoulos, A., Kostopoulos, V.: Chapter 14—Multifunctional carbon nanotube-based nano-composites for aerospace applications. In: Friedrich, K., Breuer, U. (eds.) Multifunctionality of Polymer Composites, pp. 448–490. Elsevier (2015)

  62. Loos, M.R., Yang, J., Feke, D.L., Manas-Zloczower, I.: Enhanced fatigue life of carbon nanotube-reinforced epoxy composites. Polym. Eng. Sci. 52, 1882–1887 (2012)

    Article  Google Scholar 

  63. Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., Paipetis, A.: Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Compos. Sci. Technol. 70(4), 553–563 (2010)

    Article  Google Scholar 

  64. Mannov, E., Schmutzler, H., Chandrasekaran, S., Viets, C., Buschhorn, S., Tölle, F., Mülhaupt, R., Schulte, K.: Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Compos. Sci. Technol. 87, 36–41 (2013)

    Article  Google Scholar 

  65. Khan, S.U., Li, C.Y., Siddiqui, N.A., Kim, J.-K.: Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes. Compos. Sci. Technol. 71(12), 1486–1494 (2011)

    Article  Google Scholar 

  66. Tanimoto, T.: A new vibration damping CFRP material with interlayers of dispersed piezoelectric ceramic particles. Compos. Sci. Technol. 67(2), 213–221 (2007)

    Article  Google Scholar 

  67. Kim, S.Y., Tanimoto, T., Uchino, K., Nam, C.H., Nam, S., Il Lee, W.: Effects of PZT particle-enhanced ply interfaces on the vibration damping behavior of CFRP composites. Compos. Part A Appl. Sci. Manuf. 42(10), 1477–1482 (2011)

    Article  Google Scholar 

  68. Jouni, M., Faure-Vincent, J., Fedorko, P., Djurado, D., Boiteux, G., Massardier, V.: Charge carrier transport and low electrical percolation threshold in multiwalled carbon nanotube polymer nanocomposites. Carbon N. Y. 76, 10–18 (2014)

    Article  Google Scholar 

  69. Gardea, F., Lagoudas, D.C.: Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos. Part B Eng. 56, 611–620 (2014)

    Article  Google Scholar 

  70. El Sawi, I., Olivier, P.A., Demont, P., Bougherara, H.: Processing and electrical characterization of a unidirectional CFRP composite filled with double walled carbon nanotubes. Compos. Sci. Technol. 73, 19–26 (2012)

    Article  Google Scholar 

  71. Gou, J., Tang, Y., Liang, F., Zhao, Z., Firsich, D., Fielding, J.: Carbon nanofiber paper for lightning strike protection of composite materials. Compos. Part B Eng. 41(2), 192–198 (2010)

    Article  Google Scholar 

  72. Song, W.-L., Cao, M.-S., Lu, M.-M., Bi, S., Wang, C.-Y., Liu, J., Yuan, J., Fan, L.-Z.: Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon N. Y. 66, 67–76 (2014)

    Article  Google Scholar 

  73. Pham, G.T., Park, Y.-B., Liang, Z., Zhang, C., Wang, B.: Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos. Part B Eng. 39(1), 209–216 (2008)

    Article  Google Scholar 

  74. Njuguna, M.K., Yan, C., Hu, N., Bell, J.M., Yarlagadda, P.K.D.V.: Sandwiched carbon nanotube film as strain sensor. Compos. Part B Eng. 43(6), 2711–2717 (2012)

    Article  Google Scholar 

  75. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Kinloch, I.A., Bauhofer, W., Windle, A.H., Schulte, K.: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer (Guildf) 47(6), 2036–2045 (2006)

    Article  Google Scholar 

  76. Kilik, R., Davies, R., Darwish, S.M.H.: Thermal conductivity of adhesive filled with metal powders. Int. J. Adhes. Adhes. 9(4), 219–223 (1989)

    Article  Google Scholar 

  77. Fiamegkou, E., Athanasopoulos, N., Kostopoulos, V.: Prediction of the effective thermal conductivity of carbon nanotube-reinforced polymer systems. Polym. Compos. 35(10), 1997–2009 (2014)

    Article  Google Scholar 

  78. Park, J.G., Cheng, Q., Lu, J., Bao, J., Li, S., Tian, Y., Liang, Z., Zhang, C., Wang, B.: Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization. Carbon N. Y. 50(6), 2083–2090 (2012)

    Article  Google Scholar 

  79. Im, H., Kim, J.: Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon N. Y. 50(15), 5429–5440 (2012)

    Article  Google Scholar 

  80. Wu, H., Drzal, L.T.: Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon N. Y. 50(3), 1135–1145 (2012)

    Article  Google Scholar 

  81. Wang, S., Liang, Z., Gonnet, P., Liao, Y.H., Wang, B., Zhang, C.: Effect of nanotube functionalization on the coefficient of thermal expansion of nanocomposites. Adv. Funct. Mater. 17(1), 87–92 (2007)

    Article  Google Scholar 

  82. Shokrieh, M.M., Daneshvar, A., Akbari, S., Chitsazzadeh, M.: The use of carbon nanofibers for thermal residual stress reduction in carbon fiber/epoxy laminated composites. Carbon N. Y. 59, 255–263 (2013)

    Article  Google Scholar 

  83. Shokrieh, M.M., Daneshvar, A., Akbari, S.: Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes. Mater. Des. 53, 209–216 (2014)

    Article  Google Scholar 

  84. Eslami, Z., Yazdani, F., Mirzapour, M.A.: Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 72, 22–31 (2015)

    Article  Google Scholar 

  85. Fu, X., Zhang, C., Liu, T., Liang, R., Wang, B.: Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites. Nanotechnology 21(23), 235701 (2010)

    Article  Google Scholar 

  86. European Comission—Horizon 2020—NMP: Platform. 2015. [Online]. Available: http://www.platform-project.eu/

  87. Siochi, E.J.: Challenges for Insertion of Structural Nanomaterials in Aerospace Applications. 1–4 (2012)

  88. Linden, A., Fenn, J.: Understanding Gartner’s hype cycles. Strategic Analysis Report No R-20-1971. Gartner, Inc (2003)

  89. Vlasveld, D.P.N., Bersee, H.E.N., Picken, S.J.: Nanocomposite matrix for increased fibre composite strength. Polymer (Guildf) 46(23), 10269–10278 (2005)

    Article  Google Scholar 

  90. Liu, W., Zhang, S., Hao, L., Yang, F., Jiao, W., Li, X., Wang, R.: Fabrication of carbon nanotubes/carbon fiber hybrid fiber in industrial scale by sizing process. Appl. Surf. Sci. 284, 914–920 (2013)

    Article  Google Scholar 

  91. Wang, B.C., Zhou, X., Ma, K.M.: Fabrication and properties of CNTs/carbon fabric hybrid multiscale composites processed via resin transfer molding technique. Compos. Part B Eng. 46, 123–129 (2013)

    Article  Google Scholar 

  92. Arkema Inc.: CNT Solid Concentrates to be dispersed in liquid thermoset—Graphistrength®. [Online]. Available: http://www.graphistrength.com/export/sites/graphistrength/.content/medias/downloads/literature/Graphistrength-C-S1-25-English-Dec2013.pdf

  93. Wang, Z., Ye, X.: A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnology 24(26), 265704 (2013)

    Article  Google Scholar 

  94. Drescher, P., Thomas, M., Borris, J., Riedel, U., Arlt, C.: Strengthening fibre/matrix interphase by fibre surface modification and nanoparticle incorporation into the matrix. Compos. Sci. Technol. 74, 60–66 (2013)

    Article  Google Scholar 

  95. Wang, S., Downes, R., Young, C., Haldane, D., Hao, A., Liang, R., Wang, B., Zhang, C., Maskell, R.: Carbon Fiber/Carbon Nanotube Buckypaper Interply Hybrid Composites: manufacturing Process and Tensile Properties. Adv. Eng. Mater. 17(10), 1442–1453 (2015)

    Article  Google Scholar 

  96. Liu, L., Shen, L.L.: Influence of CNT buckypaper on the interlaminar shear strength of laminates. 20th International Conference on Composite Materials, Copenhagen, 19–24 July 2015

Download references

Acknowledgments

This work is supported by the European Space Agency under the contract 4000107311/12/NL/PA (NEFELI activity) and 4000108124/13/NL/MV (NESTOR activity).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Kostopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostopoulos, V., Masouras, A., Baltopoulos, A. et al. A critical review of nanotechnologies for composite aerospace structures. CEAS Space J 9, 35–57 (2017). https://doi.org/10.1007/s12567-016-0123-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-016-0123-7

Keywords

Navigation