Skip to main content
Log in

Propulsive jet influence on generic launcher base flow

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Afterbody flow phenomena represent a significant source of uncertainties in the design of a launcher. Therefore, there is a demand for measuring such flows in wind tunnels. For propulsive jet simulation a new jet facility was integrated into a hypersonic/supersonic wind tunnel. The jet simulation resembles the generic model of a staged rocket launcher. The design and the qualification of the facility are reported. This includes measurements of pressure, temperature and Mach number distribution. Pressure and Schlieren measurements are conducted in the wake of the generic launcher. The unsteady pressure characteristics at the generic rocket base and fairing are analyzed for supersonic and hypersonic freestream. The influence of the under-expanded jet is reported and the jet temperatures are varied. On the base fluctuations at a Strouhal number around 0.25 dominates supersonic freestream flows. Additionally, a fluctuation level increase on the base is observed for Strouhal numbers above 0.75 in hypersonic flow regime, which is attributed to the interactions of wake flow and jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Delery, J., Sirieix, M.: Base flows behind missiles. AGARD LS-98, vol. 6, pp. 1–78 (1979)

  2. Shvets, A.: Base pressure fluctuations. Fluid Dyn. 14(3), 394–401 (1979)

    Article  Google Scholar 

  3. Eldred, K.: Base pressure fluctuations. J. Acoust. Soc. Am. 33(1), 59–63 (1961)

    Article  Google Scholar 

  4. Herrin, J.L., Dutton, J.C.: The turbulence structure of a reattaching axisymmetric compressible free shear layer. Phys. Fluids 9, 3502 (1997). doi:10.1063/1.869458

    Article  Google Scholar 

  5. Mabey, D.G.: Some measurements of base pressure fluctuations at subsonic and supersonic speeds. Aeronautical Research Council, ARC-CP-1204, pp. 1–11 (1972)

  6. Deck, S., Thorigny, P.: Unsteadiness of an axisymmetric separating-reattaching flow: numerical investigation. Phys. Fluids 19, 065103 (2007). doi:10.1063/1.2734996

    Article  Google Scholar 

  7. Janssen, J.R., Dutton, J.C.: Time-series analysis of supersonic base-pressure fluctuations. AIAA J. 42(3), 605–613 (2004)

    Article  Google Scholar 

  8. Herrin, J.L., Dutton, J.C.: Supersonic base flow experiments in the near wake of a cylindrical afterbody. AIAA J. 32(1), 77–83 (1994)

    Article  Google Scholar 

  9. Xiao, Z., Fu, S.: Studies of the unsteady supersonic base flows around three afterbodies. Acta. Mech. Sin. 25, 471–479 (2009). doi:10.1007/s10409-009-0248-4

    Article  MATH  Google Scholar 

  10. Weiss, P.-E., Deck, S., Robinet, J.-C., Sagaut, P.: On the dynamics of axisymmetric turbulent separating/reattaching flows. Phys. Fluids 21, 075103 (2009). doi:10.1063/1.3177352

    Article  Google Scholar 

  11. Bitter, M., Scharnowski, S., Hain, R., Kaehler, C.J.: High-repetition-rate PIV investigations on a generic rocket model in sub- and supersonic flows. Exp. Fluids 50, 1019–1030 (2011). doi:10.1007/s00348-010-0988-8

    Article  Google Scholar 

  12. Simon, F., Deck, S., Guillen, P., Sagaut, P.: Reynolds-averaged navier–stokes/large-eddy simulations of supersonic base flow. AIAA J. 44(11), 2578–2590 (2006)

    Article  Google Scholar 

  13. Sahu, J.: Computations of supersonic flow over a missile afterbody containing an exhaust jet. J. Spacecr. 24(5), 403–410 (1987)

    Article  Google Scholar 

  14. Kawai, S., Fujii, K.: Computational study of supersonic base flow using hybrid turbulence methodology. AIAA J. 43(6), 1265–1275 (2005)

    Article  Google Scholar 

  15. Deprés, D., Reijasse, P.: Analysis of unsteadiness in afterbody transonic flows. AIAA J. 42(12), 2541–2550 (2004)

    Article  Google Scholar 

  16. Sahu, J., Heavey, K.R.: Numerical investigation of supersonic base flow with base blees. J. Spacecr. Rocket. 34(1), 61–69 (1995)

    Google Scholar 

  17. Wong, H., Meijer, J., Schwane, R.: Theoretical and experimental investigations on Ariane 5 base-flow buffeting. In: Proceedings of the 5th European Symposium on Aerothermodynamics for Space Vehicles, ESA Publications Division ESTEC, Noordwijk, The Netherlands (ESA SP-563) (2005)

  18. Bergman, D.: Effects of engine exhaust flow on boattail drag. J. Aircr. 8(6), 434–438 (1971)

    Article  Google Scholar 

  19. Weiss, P.E., Deck, S., Sagaut, P.: Zonal-detached-eddy-simulation of a two-dimensional and axisymmetric separating/reattaching flow. In: 38th Fluid Dynamics Conference and Exhibit, Seattle, Washington, AIAA 2008-4377, 23–26 June 2008

  20. Venkatakrishnan, L., Suriyanarayanan, P., Mathur, N.B.: BOS density measurements in afterbody flows with shock and jet effects. In: 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, AIAA 2007-4223, 25–28 June 2007

  21. Peters, W.L., Kennedy, T.L.: Jet simulation techniques—simulation of aerodynamic effects of jet temperature by altering gas compositions. In: Proceedings of the 17th Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics (1979)

  22. Peters, W.L., Kennedy, T.L.: An evaluation of jet simulation parameters for nozzle/afterbody testing at transonic mach number. In: Proceedings of the 15th Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics (1977)

  23. Kumar, R., Viswanah, P.R.: Mean and fluctuating pressure in boat-tail separated flows at transonic speeds. J. Spacecr. Rocket. 39(3), 430–438 (2002)

    Article  Google Scholar 

  24. Reijasse, P., Delery, J.: Experimental analysis of the flow past the afterbody of the Ariane 5 European launcher. J. Spacecr. Rocket. 31(2), 208–214 (1994). doi:10.2514/3.26424

    Article  Google Scholar 

  25. Statnikov, V., Saile, D., Meiß, J.H., Henckels, A., Meinke, M., Guelhan, A., Schroeder W.: Experimental and numerical investigation of the turbulent wake flow of a generic space launcher configuration. In: Proceedings of the 5th European Conference for Aerospace Sciences, EUCASS (2013)

  26. Statnikov, V., Sayadi, T., Meinke, M., Schmid, P., Schröder, W.: Analysis of pressure perturbation sources on a generic space launcher afterbody in supersonic flow using zonal turbulence modeling and dynamic mode decomposition. Phys. Fluids 27(1) (2015). doi:10.1063/1.4906219

  27. Saile, D., Guelhan, A., Henckels, A., Glatzer, C., Statnikov, V., Meinke, M.: Investigations on the turbulent wake of a generic space launcher geometry in the hypersonic flow regime. EUCASS Prog. Flight Phys. 5, 209–234 (2013). doi:10.1051/eucass/201305209

    Article  Google Scholar 

  28. Saile, D., Guelhan, A.: Plume-induced effects on the near-wake region of a generic space launcher geometry. In: Proceedings of the 32nd AIAA Applied Aerodynamics Conference, AIAA 2014–3137 (2014)

  29. Koppenwallner, G., Mueller-Eigner, R., Friehmelt, H.: HHK Hochschul-Hyperschall-Kanal: Ein “Low cost” Windkanal für Forschung und Ausbildung. DGLR Jahrbuch, Band 2, 887–896 (1993)

    Google Scholar 

  30. Pindzola, M.: Jet simulation in ground test facilities. AGARDograph 79(11), 1–56 (1963)

    Google Scholar 

  31. Hannemann, K., Luedeke, H., Pallegoix, J.F., Ollivier, A., Lambare, H. Maseland, J.E.J., Geurts, E.G.M., Frey, M., Deck, S., Schrijer, F.F.J., Scarano, F., Schwane, R.: Launch vehicle base buffeting—Recent experimental and numerical investigations. In: Proceedings of 7th European Symposium on Aerothermodynamics, ESA Communications ESTEC, Noordwijk, The Netherlands (ESA SP-692) (2011)

  32. Estorf, M., Wolf, T., Radespiel, R.: Experimental and numerical investigations on the operation of the hypersonic Ludwieg tube Braunschweig. In: Proceedings of the 5th European Symposium on Aoerothermo-dynamics for Space Vehicles, ESA SP-563, 579–586 (2005)

  33. Wu, J., Radespiel, R.: Tandem nozzle supersonic wind tunnel design. Int. J. Eng. Syst. Model. Simul. Proc. 5(1), 8–18 (2013). doi:10.1504/IJESMS.2013.052369

    Google Scholar 

  34. Wu, J., Radespiel, R., Zamre, P.: Disturbance characterization and flow quality improvement in a Tandem Nozzle Mach 3 Wind Tunnel. Exp. Fluids (2015). doi:10.1007/s00348-014-1887-1

    Google Scholar 

  35. Saile, D., Henckels, A., Guelhan, A.: Design of the TIC-nozzle and Definition of the Instrumentation. In: ADAMS, N.A. et al. (eds) DFG Sonderforschungsbereich/Transregio 40—Annual Report 2009, TU München, Garching (2009)

  36. Gruemmer, K.: Ein Rechenprogramm für den Entwurf ebener und rotationssymmetrischer Überschallwindkanaldüsen. DFVLR-FB 76–59, Deutsches Zentrum für Luft, Und Raumfahrt, Cologne (1976)

  37. Launch Kit Flight 202 Ariane 5.http://www.astrium.eads.net/en/launch-kits/launch-kit-flight-202-ariane-5-st2-gsat-8-insat-4g.html (2013). Accessed 11 March 2013

  38. Ali, S.R.C., Wu, J., Radespiel, R., Schilden, T., Schroeder, W.: High-frequency measurements of acoustic and entropy disturbances in a hypersonic wind tunnel. In: Proceedings of the 44th AIAA Fluid Dynamics Conference (2014). doi:10.2514/6.2014-2644

  39. Morkovin, M.V.: Fluctuations and hot-wire anemometry in compressible flows. AGARD-AG-24 (1956)

  40. Kovasznay, L.S.: Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657–674 (1953)

    Article  MATH  Google Scholar 

  41. Laufer, J.: Some statistical properties of the pressure field radiated by a turbulent boundary layer. Phys. Fluids (1958–1988) 7(8), 1191–1197 (1964)

    Article  MATH  Google Scholar 

  42. Stainback, P.C., Wagner, R.D.: A comparison of disturbance levels measured in hypersonic tunnels using a hot-wire anemometer and a pitot pressure probe. In: Proceedings of the 7th Aerodynamic Testing Conference. AIAA paper no. 72–1003. Palo Alto, California, Sep. 13–15 (1972)

  43. Pain, R., Weiss, P.E., Deck S.: Zonal detached eddy simulation of the flow around a simplified launcher afterbody. AIAA J. 52(9), 1967–1979 (2014). doi:10.2514/1.J052743

    Article  Google Scholar 

  44. Schwane, R.: Numerical prediction and experimental validation of unsteady loads on Ariane 5 and VEGA. J. Spacecr. Rocket. 52(1), 54–62 (2015). doi:10.2514/1.A32793

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the framework Sonderforschungsbereich Transregio 40 (Technological foundations for the design of thermally and mechanically highly loaded components of future space transporting systems). The authors thank R. Müller-Eigner (Hyperschall Technologie Goettingen GmbH, HTG, Katlenburg-Lindau) for the efforts in designing and manufacturing the jet simulation facility and D. Saile (German Aerospace Center, DLR, Cologne) and V. Statnikov (RWTH Aachen) for supporting the PSD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Stephan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stephan, S., Wu, J. & Radespiel, R. Propulsive jet influence on generic launcher base flow. CEAS Space J 7, 453–473 (2015). https://doi.org/10.1007/s12567-015-0098-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-015-0098-9

Keywords

Navigation