Skip to main content
Log in

Advances in deployable structures and surfaces for large apertures in space

  • Review Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Large apertures in space have applications for telecommunications, Earth observation and scientific missions. This paper reviews advances in mechanical architectures and technologies for large deployable apertures for space antennas and telescopes. Two complementary approaches are described to address this challenge: the deployment of structures based on quasi-rigid members and highly flexible structures. Regarding the first approach, deployable articulated structures are classified in terms of their kinematics as 3D or planar linkages in multiple variants, resulting in different architectures of radial, peripheral or modular constructions. A dedicated discussion on the number of degrees of freedom and constraints addresses the deployment reliability and thermo-elastic stability of large elastic structures in the presence of thermal gradients. This aspect has been identified as a design driver for new developments of peripheral ring and modular structures. Meanwhile, other design drivers are maintained, such as the optimization of mass and stiffness, overall accuracy and stability, and pragmatic aspects including controlled industrial development and a commitment to operators’ needs. Furthermore, reflecting surface technologies and concepts are addressed with a view to the future, presenting advances in technical solutions for increasing apertures and reducing areal mass densities to affordable levels for future missions. Highly flexible materials capable of producing ultra-stable shells are described with reference to the state of the art and new developments. These concepts may enable large deployable surfaces for antennas and telescopes, as well as innovative optical concepts such as photon sieves. Shape adjustment and shape control of these surfaces are described in terms of available technologies and future needs, particularly for the reconfiguration of telecommunications antennas. In summary, the two complementary approaches described and reviewed cover the domain of present and foreseeable space applications. Recent European developments are discussed within a global context and a critical review of the state of the art and recent advances taking into account the reliability and structural stability as design drivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Mangenot, C., et al.: Large Antenna Working Group, ESA Final Report, TEC-EEA/2010.595/CM (2010)

  2. Amyotte, E., Martins Camelo, L.: Antennas for satellite communications. In: Imbriale, W., Gao, S., Boccia, L. (eds.) Space Antenna Handbook, Chap. 12. Wiley, New York (2012)

  3. Capece, P., Torre, A.: SAR antennas. In: Imbriale, W., Gao, S., Boccia, L. (eds.) Space Antenna Handbook, Chap. 13. Wiley, New York (2012)

  4. BIOMASS—Report for Mission Selection: An Earth Explorer to Observe Forest Biomass, ESA SP-1324/1 (2013). http://www.esa.int/livingplanet

  5. Meschini, A., Milano, M., Rigato, R., Cammarata, A., Santiago-Prowald, J.: Orbital manoevre disturbances of a large deployable antenna. In: International Scientific Conference on Advanced Lightweight Structures and Reflector Antennas, 14–16 October 2009, Tbilisi, Georgia

  6. Puig, L., Barton, A., Rando, N.: A review on large deployable structures for astrophysics missions. Acta Astronaut. 67, 12–26 (2010)

    Article  Google Scholar 

  7. Medzmariashvili, E.: Transformable Space and Ground Constructions. Valemar S&T Ltd–Gregory & Co., Georgia (1995). (in Russian)

    Google Scholar 

  8. Medzmariashvili, E., Kinteraya, G., Datashvili, L., Bedukadze, G., Siradze, N., Efremov, I., Chernyavski, A., Kravchenko, Y.: Space experiment “Reflector” on testing the large-scale deployable high precision offset antenna reflector of a new generation at the orbital station MIR. In: AP2000 Millennium Conference on Antennas & Propagation, Davos, Switzerland, 9–14 April 2000

  9. Scialino, G.L., Cherniavski, A., Korneev, V., Magjanov, R., Medzmariashvili, E., Gulyayev, V., Scolamiero, L., Santiago-Prowald, J.: Presentation of Reflector Dish Development Activities and Achieved Performances, 28th ESA Antenna Workshop, June 2005, ESA-ESTEC, Noordwijk, The Netherlands

  10. Roederer, A.: Historical overview of the development of space antennas. In: Imbriale, W., Gao, S., Boccia, L. (eds.) Space Antenna Handbook, chap. 7. Wiley, New York (2012)

  11. Pellegrino, S. (ed.): Deployable structures in engineering, in deployable structures. CISM Courses and Lectures, vol. 412. International Center for Mechanical Sciences. Springer, Berlin (2001)

  12. Datashvili, L.: Review and evaluation of the existing designs/technologies for space large deployable apertures. In: International Scientific Conference on Advanced Lightweight Structures and Reflector Antennas, 14–16 October 2009, Tbilisi, Georgia

  13. Ozawa, S., Shintate, K., Tsujihata, A.: Tri-fold deployable reflector for communication satellites. In: AIAA 29th International Communications Satellite Systems Conference (ICSSC-2011). AIAA2011-8082

  14. Arkhipov, M., Fedorchuk, S., Kardashev, N., Vinogradov, I.: “RadioAstron”: the largest space deployable solid reflector antenna. In: 33rd ESA Antenna Workshop, October 2011 ESA-ESTEC, Noordwijk, The Netherlands

  15. Sarrus, P.F.: Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires; et reciproquement. Acad. Sci. 36, 1036–1038 (1853)

    Google Scholar 

  16. Bennett, G.T.: A new mechanism. Engineering 76, 777–778 (1903)

    Google Scholar 

  17. Chen, Y., You, Z.: Spatial overconstrained linkages—the lost jade. In: Koetsier, T., Ceccarelli, M. (eds.) Explorations in the History of Machines and Mechanisms. Proceedings of HMM2012 History of Mechanism and Machine Science, vol. 15, pp. 535–550. Springer, Berlin (2012)

  18. Baker, E.J.: The Bennett, Goldberg and Myard linkages-in perspective. J. Mech. Mach. Theory. 14, 239–253 (1979)

    Google Scholar 

  19. Chen, Y.: Design of Structural Mechanisms. PhD thesis dissertation, University of Oxford (2003)

  20. Goldberg, M.: New five-bar and six-bar linkages in three dimensions. Trans. ASME 65, 649–663 (1943)

    Google Scholar 

  21. Myard, F.E.: Contribution à la géométrie des systèmes articulés. Societé Mathématique de France 59, 183–210 (1931)

    MathSciNet  Google Scholar 

  22. Fraux, V., Lawton, M., Reveles, J.R., You, Z.: Novel large deployable antenna backing structure concepts for foldable reflectors. In: Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  23. Qi, X., Li, B., Deng, Z., Liu, R., Guo, H.: Design and optimisation of large deployable mechanism constructed by Myard linkages. In: Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  24. Fanning, P., Hollaway, L.: The modal analysis of a unit building block for a 5 metre deployable antenna for space applications. In: Proceedings of the 4th International Conference on Space structures, vol. 1, pp. 432–441. Space Structures 4, Surrey (1993)

  25. You, Z.: Deployable Structures for Masts and Reflector Antennas. PhD thesis dissertation, University of Cambridge (1994)

  26. Tibert, G.: Deployable Tensegrity Structures for Space Applications. Doctoral thesis, KTH Royal Institute of Technology Department of Mechanics, Stockholm (2002)

  27. Ganga, P.L., Zolesi, V., Scolamiero, L., Micheletti, A., Podio-Guidugli, P., Tibert, G., Donati, A., Ghiozzi, M.: Tensegrity structures for large deployable reflectors. In: Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  28. Narayanan, S.: Space Structures: Principles and Practice, vol. 2. Multi-Science Publishing Co. Ltd., Essex. ISBN: 0 906522 42 0 (2006)

  29. Miura, K., Miyazaki, Y.: Concept of the tension truss antenna. AIAA J. 28(6), 1098–1104 (1990)

    Article  Google Scholar 

  30. Hirosawa, H., et al.: Space VLBI satellite HALCA and its engineering accomplishments. Acta Astronaut. 50(5), 301–309 (2002)

    Article  Google Scholar 

  31. Thomson, M., Marks, G., Hedgepeth, J.: Light-Weight Reflector for Concentrating Radiation. Patent US5680145 (1997)

  32. Thomson, M.: The AstroMesh deployable reflector. In: Pellegrino, S., Guest, S.D. (eds.) IUTAM-IASS Symposium on Deployable Structures: Theory and Applications (Cambridge, UK, 6–9 September 1998), pp. 435–446. Kluwer Academic Publishers, Dordrecht (2000)

  33. Medzmariashvili, E.: Constructive logic of reflector created with double pantograph deployable load-bearing ring. In: Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  34. You, Z., Pellegrino, S.: Structural concept of a deployable mesh reflector. In: ESA Antenna Workshop, ESA-WPP-100 (1995)

  35. Harris Corporation: Development of the 15 metre Diameter Hoop Column Antenna, NASA-CR-4038 (1986)

  36. Mini, F., Scialino, G.L., Milano, M., Lubrano, V., Conforto, P., Pellegrino, P., Caswell, D., Santiago Prowald, J., Van’t Klooster, C.G.M., Cherniavski, A., Korneev, V., Vorobey, I., Fedoseev, A.: European large deployable antenna: development status and applications. In: Proceedings of the European Conference on Antennas and Propagation ‘EuCAP 2006’, Nice, France, 6–10 November 2006 (ESA Publication SP-626, October 2006)

  37. Santiago-Prowald, J.: Large Deployable Antennas Mechanical Concepts. http://www.kiss.caltech.edu/workshops/apertures2008/talks/santiagoprowald.pdf

  38. Datashvili, L.: Foldability aspects of hinged-rod systems applicable to the deployable space structures. In: Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  39. Datashvili, L., Endler, S., Baier, H., Langer, H., Friemel, M. Tsignadze, N., Santiago-Prowald, J.: Study of mechanical architectures of large deployable space antenna apertures: from design to tests. In: Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  40. Meguro, A., Mitsugi, J., Ando, K.: Modular Deployable Antenna. Patent US62023791 (2001)

  41. Meguro, A., Shintate, K., Usui, M., Tsujihata, A.: In-orbit deployment characteristics of large deployable antenna reflector onboard engineering test satellite VIII. Acta Astronaut. 65, 1306–1316 (2009)

    Article  Google Scholar 

  42. Kellog, K.: Presentation on Galileo Antenna Failure and Mission Recovery. Jet Propulsion Laboratory/CalTech, USA (1995)

  43. Santiago-Prowald, J., Such Taboada, M.: Innovative deployable reflector design. In: 33rd ESA Antenna Workshop, October 2011 ESA-ESTEC, Noordwijk, The Netherlands

  44. Medzmariashvili, N, Medzmariashvili, E., Tsignadze, N., Tusishvili, O., Santiago-Prowald, J., Mangenot, C., Baier, H., Scialino, L., Philipenko, L.: Possible options for jointly deploying a ring provided with v-fold bars and a flexible pre-stressed center. In: Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  45. Rodrigues, G., Such-Taboada, M., Datashvili, L., Tsignadze, N., Medzmariashvili, E., Santiago-Prowald, J.: Isostatic cable net for large deployable antenna reflector. In: Large Deployable Antenna Workshop, 2-3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  46. Tserodze, S., Medzmariashvili, E., Tusishvili, O., Tsignadze, N., Santiago-Prowald, J., Van ‘t Klooster, C.: Mechanical supporting ring structure. In: Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  47. Scialino, L., Migliorelli, M., Gatti, N., Breunig, E., Ihle, A., Datashvili, L., van ‘t Klooster, K., Santiago Prowald, J.: Reflector technology trade-off for lda on telecom and earth observation applications. In: Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  48. Ihle, A., Breunig, E., Datashvili, L., Migliorelli, M., Scialino, L., van’t Klooster, K., Santiago-Prowald, J.: Large deployable reflector technologies for future european telecom and earth observation missions. In; Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  49. Frank Pai, P.: Highly Flexible Structures: Modelling, Computation and Experimentation. AIAA Education Series (2007)

  50. Santiago-Prowald, J., Henriksen, T., Stavrinidis, C.: Modelling and testing of large deployable space apertures. In: Proceedings of the International Scientific Conference “Advanced Lightweight Structures and Reflector Antennas”, 14–16 October 2009, Tbilisi, Georgia

  51. Santiago-Prowald, J., Salghetti Drioli, L.: Space environment and materials. In: Imbriale, W., Gao, S., Boccia, L. (eds.) Space Antenna Handbook, Chap. 4. Wiley, New York (2012)

  52. Tan, L.T., Soykasap, O., Pellegrino, S.: Design and manufacture of stiffened spring back reflector demonstrator. In: Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, April 2005, AIAA 2005-2048

  53. Baier, H., Darashvili, L., Nathrath, N., Pellegrino, S.: Technical Assessment of High Accuracy Large Space Borne Reflector Antenna. Final Report, Contract16757/02/NL/LvH/bj

  54. Baier, H., Darashvili, L., Nathrath, N.: The deployable precision flexible shell-membrane reflector SMART. In: Proceedings EuCAP 2006, Nice, France, ESA SP-626 (2006)

  55. Malllikarachchi, H.M.Y.C., Pellegrino, S.: Composite deployable tubular antenna booms. In: Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  56. Schmidt, T., Schiller, M., Schmalbach, M., Fix, A., Scolamiero, L.: Recent EM testing results for ultra-light deployment mechanism for sectioned large deployable antenna reflectors. Large Deployable Antenna Workshop, 2–3 October 2012, ESA-ESTEC, Noordwijk, The Netherlands

  57. Salama, M., Jenkins, C.H.: Intelligent gossamer structures: a review of recent developments and future trends. AIAA paper 2001-1196 (2001)

  58. Thomson, M.: The Astromesh deployable reflector. In: Proceedings of Antennas and Propagation International Symposium (1999). doi:10.1109/APS.1979.838231 Israel

  59. TecSar: Encyclopedia Astronautica. http://www.astronautix.com/craft/tecsar.htm

  60. Wade, W.D.: Development of low PIM, zero CTE mesh for deployable communication antennas. In: Proceedings of MILCOM 90 Conference, pp. 1175–1178 (1990)

  61. Miura, A., Tanaka, M.: A mesh reflecting surface with electrical characteristics independent on direction of incident wave. In: Proceedings of Antennas and Propagation Symposium 2004. doi:10.1109/APS.2004.1329546

  62. Di, J., Duan, B., Zheng, F.: Reflector shape adjusting methods for cable mesh deployable antennas. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics (2006). doi:10.1109/ISSCAA.2006.1627522

  63. Datashvili, L., Baier, H., Wehrle, E., Kuhn, T., Hoffmann, J.: Large shell-membrane space reflectors. In: Proceedings of AIAA Structures, Dynamics, and Materials Conference, Honolulu, Hawaii (2010)

  64. Datashvili, L., Baier, H.: Flexible fiber composites for space structures. In: Chang, G. (ed.) Fiber Composite Structures. Nova Science Publishers, Inc., USA (2011)

    Google Scholar 

  65. Schmid, M., Barho, R.: Development of an Unfurlable CFRP skin reflector. In: Proceedings of 25th Antenna Workshop, ESTEC, Noordwijk (2002)

  66. Devilliers, C., Kroedel, M.: CESIC—optomechanical developments for space mirrors. In: 7th International Conference on Space Optics, October 2008

  67. Sein, E., Toulemont, Y., Safa, F., Duran, M., Deny, P., De Chambure, D., Passvogel, T., Pilbratt, G.: A 3.5 M SiC Telescope for HERSCHEL mission. In: Conference Proceedings Space Telescopes and Instruments, SPIE 4850 (2003)

  68. Flint, E., Lindler, J. Hall, J., Rankine, C., Regelbrugge, M.: Overview of form stiffened thin film shell characteristic behavior. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2006). doi:10.2514/6.2006-1900

  69. Pearson, J.C., Unroe, M.R.: Precision Tooling for Thin Film Membrane Reflectors. AMPTIAC Q. 8(1) (2004)

  70. Jenkins, C.H., Tampi, M., Kalanovic, V.D., Padmanabhan, K.: Practical aspects of precision membrane antenna shape control. In: IEEE International Conference on Systems, Man and Cybernetics (1998). doi:10.1109/ICSMC.1998.726494

  71. Andersen, G.: Large optical photon sieve. Opt. Lett. 30(22) (2005)

  72. Baier, H., Datashvili, L., Endler, S., Roose, S., Rodrigues, G.: Large deployable telescopes—also for μm-wavelengths? In: Proceedings of ESA Large Deployable Antenna Workshop, Noordwijk, Octobre 2012

  73. Rapp, S., Baier, H.: Shape memory polymer actuator patches for shape adjustment of fiber composite parts. In: Proceedings of 19th AIAA/ASME/AHS Adaptive Structures Conference, Denver, USA, 2011

  74. Leng, J., Du, S.: Shape Memory Polymers and Multifunctional Composites. CRC Press, New York (2010)

    Book  Google Scholar 

  75. Bar-Cohen, Y., Leary, S.: Electroactive polymer characterization methods. In: Proceedings of SPIE Symposium Smart Structures and Materials, Newport (2000)

  76. Nella, J., Atcheson, P., Atkinson, C., Au, D., Blair, M., Bronowicki, A., Fitzgerald, D., Heideng, J., Lightsey, P., Kelly, T., Matthews, G., Pohner, J., Reynolds, P., Shuckstes, D., Texter, S., Waldie, D., and Whitley, R.: Next Generation Space Telescope (NGST) observatory architecture and performance. In: Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2009)

  77. Denoyer, K.K., Flint, E.M., Main, J.A., Lindler, J.E.: Actively controlled thin-shell space optics, smart structures and materials. In: Proceedings of SPIE, San Diego, CA, vol. 5054, pp. 263–274 (2003)

  78. Dargaville, T.R., Celina, M.C., Elliott, J.M., Chaplya, P.M., Jones, G.D., Mowery, D.M., Assink, R.A., Clough, R.L., Martin, J.W.: Characterization, Performance and Optimization of PVDF as a Piezoelectric Film for Advanced Space Mirror Concepts. Report No. SAND2005-6846, Sandia National Laboratories, 2005

  79. Rodrigues, G., Bastaits, R., Roose, S., Stockman, Y., Gebhardt, S., Schoenecker, A., Villon, P., Preumont, A.: Large lightweight segmented mirrors for adaptive optics. In: Proceedings SPIE Conference on Astronomical Instrumentation—Adaptive Optics Systems (7015), Marseille, France, June 23–28, 2008

  80. Fang, H., Pattom, M., Wang, K., Im, E.: Shape control of large membrane reflectors with PVDF actuation. In: AIAA Structures, Dynamics and Materials Conference, Honolulu, Hawaii, AIAA paper 2077-1842 (2007)

  81. Rapp, S., Kang, L., Mueller, U., Han, J.H., Baier, H.: Dynamic shape estimation by modal approach using fiber bragg grating strain sensors. In: SPIE Conference on Smart Structures and Materials 2007—Sensors and Smart Structures Technologies, 18–22. March 2007, San Diego, CA. Proceedings vol. 6529 (2007)

  82. Gawronski, W.: Dynamics and Control of Structures—A Modal Approach. Springer, New York (1998)

    Book  MATH  Google Scholar 

  83. Preumont, A.: Vibration Control of Active Structures—An Introduction, 2nd edn. Kluwer Academic Publishers, Dordrecht (2004)

  84. Su, T., Craig, R.: Model reduction and control of flexible structures using Krylov vectors. J Guid Control Dyn 14(2), 260–267 (1991)

    Article  Google Scholar 

  85. Antoulas, A.C., Sorensen, D.C.: Approximation of large-scale dynamical systems: an overview. Int J Appl Math Comput Sci 11(5), 1093–1121 (2001)

    MathSciNet  MATH  Google Scholar 

  86. Yoo, E.J., Baier., H.: Parametric model order reduction techniques for simulating active shape and vibration control of the large space structures. In: Proceedings of European Conference on Spacecraft Structures, Materials and Mechanical Testing, Toulouse, September 2009

  87. Yoo, E.J.: Parametric Model Order Reduction for Structural Analysis and Control. Doctoral thesis, TU Muenchen (2010) (available via www)

  88. Clarricoats, P.J.B., Zhou, H.: Design and performance of a reconfigurable mesh reflector antenna Part 1: Antenna design. Paper 8306H (El I). In: IEE Proceedings-H, vol. 13X. No. 6, December 1991

  89. Pontoppidan, K.: Light-weight reconformable reflector antenna dish. In: Proceedings of 28th ESA Antenna Workshop on Space Antenna Systems and Technologies, 31 May–3 June 2005 ESA/ESTEC, Noordwijk, The Netherlands (2005)

  90. Datashvili, L., Baier, H., Wei, B., Hoffman, J., Wehrle, E., Schreider, L., Mangenot, C., Santiago-Prowald, J., Scolamiero, L., Angevain, J-C.: Mechanical investigations of in-space-reconfigurable reflecting surfaces. In: Proceedings of the 32nd ESA Antenna Workshop on Antennas for Space Applications, ESA/ESTEC, Noordwijk, The Netherlands (2010)

  91. Datashvili, L., Baier, H., Wei B., Endler, S., Schreider, L.: Design of a morphing skin using flexible fiber composites for space-reconfigurable reflectors. In: AIAA Structures, Dynamics and Materials Conference, Boston, USA (2013)

  92. Endler, S., Datashvili, L., Baier, H., Schreider, L.: Nano-fillers in fiber reinforced polymers for performance enhancement of satellite structures. In: Proceedings of the ESA Structures Conference, Noordwijk, The Netherlands, March 2012

  93. Washington, G., Yoon, H.-S., Angelino, M., Theunissen, W.H.: Design, modelling, and optimization of mechanically reconfigurable aperture antennas. IEEE Trans Antennas Propag 50, 628–637 (2002)

    Article  Google Scholar 

  94. Rodrigues, G., Angevain, J.C., Santiago-Prowald, J.: Shape optimization of reconfigurable antenna reflectors. In: Proceedings of ESA Workshop on Large Deployable Antennas, ESTEC, Noordwijk, October 2012

Download references

Acknowledgments

The authors would like to acknowledge the continued support from the ESA technical and applications directorates, in particular the mechanical and electrical departments of ESTEC. Special thanks to Dr. W. Kordulla and Dr. C. Stavrinidis for making possible this special edition of the CEAS Space Journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Santiago-Prowald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiago-Prowald, J., Baier, H. Advances in deployable structures and surfaces for large apertures in space. CEAS Space J 5, 89–115 (2013). https://doi.org/10.1007/s12567-013-0048-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-013-0048-3

Keywords

Navigation