Skip to main content
Log in

Preliminary applications of the nonsymmetric Kaluza–Klein (Jordan–Thiry) theory to Pioneer 10 and 11 spacecraft anomalous acceleration

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The nonsymmetric Kaluza–Klein (Jordan–Thiry) theory leads to a model of a modified acceleration that can fit an anomalous acceleration experienced by the Pioneer 10 and 11 spacecraft. A mysterious connection between an anomalous acceleration and a Hubble constant is solved in the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson, J.D. et al.: Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81, 2858 (1998)

    Article  Google Scholar 

  2. Anderson, J.D. et al.: Study of the anomalous acceleration of Pioneer 10 and 11. Phys. Rev. D 65, 082004 (2002)

    Article  Google Scholar 

  3. Nieto, M.M., Anderson, J.D.: Using early data to illuminate the Pioneer anomaly. Class. Quantum Gravity 22, 5343 (2005)

    Article  MATH  Google Scholar 

  4. Turyshev S.G., Toth V.T.: The Pioneer anomaly. Living Rev. Relativ. 13, 4. arXiv: gr-qc/1001.3686v2; http://www.livingreviews.org/lrr-2010-4 (2010)

  5. Kalinowski M.W.: Nonsymmetric Fields Theory and its Applications. World Scientific, Singapore (1990)

  6. Kalinowski, M.W.: Nonsymmetric Kaluza–Klein (Jordan–Thiry) Theory in the electromagnetic case. Int. J. Theor. Phys. 31, 611 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hlavatý, V.: Geometry of Einstein’s unified field theory. P. Noordhoff Ltd., Groningen (1957)

  8. Kalinowski, M.W.: Nonsymmetric Kaluza–Klein (Jordan–Thiry) theory in a general nonabelian case. Int. J. Theor. Phys. 30, 281 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kalinowski, M.W.: Can we get a confinement from extra dimensions. In: Ajduk, Z., Pokorski, S., Wróblewski, A.K. (eds.) Physics of Elementary Interactions. World Scientific, Singapore (1991)

  10. Moffat, J.W.: Generalized theory of gravitation and its physical consequences. In: de Sabbata, V. (ed.) Proceeding of the VII International School of Gravitation and Cosmology. World Scientific Publishing Co., Erice, p. 127 (1982)

  11. Kalinowski, M.W.: Scalar fields in the nonsymmetric Kaluza–Klein (Jordan–Thiry) theory. arXiv: hep-th/0307242v9, 7 May (2004)

  12. Stix, M.: On the time scale of energy transport in the Sun. Sol. Phys. 212, 3 (2003)

    Article  Google Scholar 

  13. Spergel, D.N. et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology. Astrophys. J. Suppl. Ser. 170, p. 377 (2007)

    Google Scholar 

  14. Sandage, A. et al.: The Hubble constant: a summary of the Hubble Space Telescope Program for the luminosity calibration of type Ia Supernovae by means of Cepheids. Astrophys. J. 653, 843 (2006)

    Article  Google Scholar 

  15. Planck collaboration, Ade, P.A.R., et al.: Planck 2013 results. XVI. In: Cosmological Parameters. arXiv: 1303.5076 v1 [astro-ph.CO], 20 March (2013)

  16. Tully, R.B., Fisher, J.R.: A new method of determining distances to galaxies. Astronom. Astrophys. 54, 661 (1977)

    Google Scholar 

  17. Freedman, W., et al.: Final results from the Hubble Space Telescope Key Project to measure the Hubble constant. Astrophys. J. 553, 47 (2001)

    Article  Google Scholar 

  18. Kelson, D.D., et al.: The Hubble Space Telescope Key Project on the extragalactic distance scale. XXVII. A derivation of the Hubble constant using the fundamental plane and \(D_n-\sigma\) relations in Leo I, Virgo, and Fornax. Astrophys. J. 29:768 (2000)

  19. Tonry, J.L. et al.: The SBF survey of galaxy distances. IV. SBF magnitudes, colors, and distances. Astrophys. J. 546, 681 (2001)

    Article  Google Scholar 

  20. Milgrom, M.: MOND—theoretical aspects. New Astron. Rev. 46, 741 (2002)

    Article  Google Scholar 

  21. Rievers, B., Bremer, S., List, M., Lämmerzahl, C., Dittus, H.: Thermal dissipation force modeling with preliminary results for Pioneer 10/11. Acta Astronaut. 66, 467 (2009)

    Article  Google Scholar 

  22. Rievers, B., Lämmerzahl, C., List, M., Bremer, S., Dittus, H.: New powerful thermal modelling for high-precision gravity missions with applications to Pioneer 10/11. New J. Phys. 11, 113032 (2009)

    Article  Google Scholar 

  23. Bertolami, O., Francisco, F., Gil, P.S.J., Páramos, J.: Estimating radiative momentum transfer through a thermal analysis of the Pioneer anomaly. Space Sci. Rev. 151, 75 (2010)

    Article  Google Scholar 

  24. Bertolami, O., Francisco, F., Gil, P.S.J., Páramos, J.: Thermal analysis of the Pioneer anomaly: a method to estimate radiative momentum transfer. Phys. Rev. D 78, 103001-1 (2008)

    Google Scholar 

  25. Bertolami, O., Francisco, F., Gil, P.S.J., Páramos, J.: Modeling of thermal perturbations using ray tracing method with preliminary results for a test case model of Pioneer 10/11 radioisotopic thermal generators. Space Sci. Rev. 151, 123 (2010)

    Article  Google Scholar 

  26. Francisco, F., Bertolami, O., Gil, P.S.J., Páramos, J.: Modelling the reflective thermal contribution to the acceleration of the Pioneer spacecraft. Phys. Lett. B 711, 337 (2012)

    Article  Google Scholar 

  27. Iorio, L., Giudice, G.: What do the orbital motions of the outer planets of the Solar System tell us about the Pioneer anomaly? New Astron. 11, 600 (2006)

    Article  Google Scholar 

  28. Fienga, A., Laskar, J., Kuchynka, P., Le Poncin-Lafitte, Ch., Manche, H., Gastineau, M.: Gravity tests with INPOP planetary ephemerides. In: Klioner, S.A., Seidelman, P.K., Soffel, M.K. (eds.) Relativity in Fundamental Astronomy. Proceedings of the IAU Symposium 261, p. 159 (2010)

  29. Standish, E.M.: Testing alternate gravitational theories. In: Klioner S.A., Seidelman P.K., Soffel M.K. (eds.) Relativity in Fundamental Astronomy. Proceedings of the IAU Symposium 261, 179 (2010)

  30. Page, G.L., Dixon, D.S., Wallin, J.F.: Can minor planets be used to assess gravity in the outer Solar System? Astrophys. J. 642, 606 (2006)

    Article  Google Scholar 

  31. Iorio, L.: Can the Pioneer anomaly be of gravitational origin? A~phenomenological answer. Found. Phys. 37, 897 (2007)

    Article  MATH  Google Scholar 

  32. Iorio, L.: Impact of the Pioneer/Rindler-type acceleration on the Oort cloud. Mon. Not. R. Astron. Soc. 419, 2226 (2012)

    Article  Google Scholar 

  33. Page, G.L., Wallin, J.F., Dixon, D.S.: How well do we know the orbits of the outer planets? The Astrophys. J. 697, 1226 (2009)

    Article  Google Scholar 

  34. Page, G.L.: Exploring the weak limit of gravity at Solar System scales. Publ. Astron. Soc. Pac. 122, 259 (2010)

    Article  Google Scholar 

  35. Wallin, J.F., Dixon, D.S., Page, G.L.: Testing gravity in the outer Solar System: results from trans-Neptunian objects. Astrophys. J. 666, 1296 (2007)

    Article  Google Scholar 

  36. Tangen, K.: Could the Pioneer anomaly have a gravitational origin? Phys. Rev. D 76, id. 042005 (2007)

    Google Scholar 

  37. Varieschi, G.U.: Conformal cosmology and the Pioneer anomaly. Phys. Res. Int. 2012, art. ID 469095 (2012).

  38. Mbelek, J.P., Mosquera Cuesta, H.J., Navello, M., Salim, J.M.: Nonlinear electrodynamics and the Pioneer 10/11 space-craft anomaly. arXiV: astro-ph/0608538 v. 3 (2006)

  39. Nizony, M., Lachièze-Rey, M.: Cosmological effects in the local static frame. Astron. Astrophys. 434, 45 (2005)

    Article  Google Scholar 

  40. Lachièze-Rey, M.: Cosmology in the Solar System: the Pioneer effect is not cosmological. Class. Quantum Gravity 24, 2735 (2007)

    Article  MATH  Google Scholar 

  41. Iorio, L.: The Lense-Thirring effect and the Pioneer anomaly: solar system tests. In: Kleinert, H., Jantzen, R.T., Ruffini, R. (eds.) Proceedings of the 11th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, p. 2558. World Scientific,Singapore (2008)

  42. Iorio, L.: Orbital effects of a time-dependent Pioneer-like anomalous acceleration. Modern Phys. Lett. A 27, id.~1250071 (2012)

  43. Iorio, L.: Does the Neptunian system of satellites challenge a gravitational origin for the Pioneer anomaly. Mon. Not. R. Astron. Soc. 405, 2615 (2010)

    Google Scholar 

  44. Iorio, L.: Can the Pioneer anomaly be induced by velocity-dependent forces? Tests in the outer regions of the Solar System with planetary dynamics. Int. J. Mod. Phys. D 18, 947 (2009)

    Article  MATH  Google Scholar 

  45. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies with an Introduction to the Problem of Three Bodies. Cambridge University Press, Cambridge (1952)

  46. Sterne T.E.: An Introduction to Celestial Mechanics. Interscience Publishers, Inc., New York (1960)

  47. Misner, W.C., Thorne, S.K., Wheeler, J.A.: Gravitation, W. H. Freeman and Comp., San Francisco (1971)

  48. Iorio, L.: The recently determined anomalous perihelion precession of Saturn. Astron. J. 137, 3615 (2009)

    Article  Google Scholar 

  49. Iorio, L., Lichtenegger, H.I.M., Ruggiero, M., Corda, Ch.: Phenomenology of the Lense–Thirring effect in the Solar System. Astrophys. Space Sci. 331, 351 (2011)

    Article  MATH  Google Scholar 

  50. Iorio, L.: Is it possible to measure the Lense–Thirring effect on the orbits of the planets in the gravitational field of the Sun? Astron. Astrophys. 431, 385 (2005)

    Article  Google Scholar 

  51. Iorio, L.: On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging. Astron. Astrophys. 433, 385 (2005)

    Article  Google Scholar 

  52. Iorio, L.: Constraining the angular momentum of the Sun with planetary orbital motions and general relativity. Sol. Phys. 281, 815 (2012)

    Article  Google Scholar 

  53. Iorio, L.: General relativistic spin-orbit and spin-spin effects on the motion of rotating particles in an external gravitational field. Gen. Relativ. Gravit. 44, 719 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Avalos-Vargas, A., Ares de Parga, G.: The precession of the orbit of a charged body interacting with a massive charged body in general relativity. Eur. Phys. J. Plus 127, art. id. 155 (2012)

    Google Scholar 

  55. Iorio, L.: Constraining the electric charges of some astronomical bodies in Reissner–Nordström spacetimes and generic r −2-type power-law potentials from orbital motions. General Relativ. Gravit. 44, 1753 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Avalos-Vargas, A., Ares de Parga, G.: The precession of the orbit of a test neutral body interacting with a massive charged body. Eur. Phys. J. Plus 126, art. id. 117 (2011)

    Google Scholar 

  57. Iorio, L.: Astronomical constraints on some long-range models of modified gravity. Adv. High Energy Phys. 2007, art. id. 090731 (2007)

  58. Adkins G.S., McDonnell, J.: Orbital precession due to central-force perturbations. Phys. Rev. D 75, id. 082001 (2007)

    Google Scholar 

  59. Schmidt H.-J.: Perihelion precession for modified Newtonian gravity. Phys. Rev. D 78, id. 023512 (2008)

    Google Scholar 

  60. Chashchina O.I., Silagadze Z.K.: Remark on orbital precession due to central-force perturbations. Phys. Rev. D 77, id. 107502 (2008)

    Google Scholar 

  61. Sanders, R.H.: Solar System constrains on multifield theories of modified dynamics. Mon. Not. R. Astron. Soc. 370, 1519 (2006)

    Article  Google Scholar 

  62. Sereno, M., Jetzer, P.h.: Dark matter versus modifications of the gravitational inverse-square law: results from planetary motion in the Solar System. Mon. Not. R. Astron. Soc. 371, 626 (2006)

    Article  Google Scholar 

  63. Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)

  64. Hobson M.P., Efstathiou G.P., Lasenby, A.N.: General relativity. In: An Introduction for Physicists. Cambridge University Press, Cambridge (2007)

  65. Adkins, G.S., McDonnell, J., Fell, R.N.: Cosmological perturbations on local systems. Phys. Rev. D 75, id. 064011 (2007)

    Google Scholar 

  66. Iorio, L.: Local cosmological effects of the order of H in the orbital motion of a binary system. Mon. Not. R. Astron. Soc. 429, 915 (2013)

    Article  Google Scholar 

  67. Cooperstock, F.I., Faraoni, V., Vollick, D.N.: The influence of the cosmological expansion on local systems. Astrophys. J. 503, 61 (1998)

    Article  Google Scholar 

  68. Carrera, M., Giulini, D.: Influence of global cosmological expansion on local dynamics and kinematics. Rev. Mod. Phys. 82, 169 (2008)

    Article  Google Scholar 

  69. Kopeikin, S.M.: Celestial ephemerides in an expanding universe. Phys. Rev. D 86, id. 064004 (2012)

    Google Scholar 

  70. Sereno, M., Jetzer, Ph.: Evolution of gravitational orbits in the expanding universe. Phys. Rev. D 75, id. 064031 (2007)

    Google Scholar 

  71. Kopeikin, S.M.: Post-Newtonian celestial dynamics in cosmology: field equations. Phys. Rev. D 87, id. 044029 (2013)

    Google Scholar 

  72. Adkins, G.S., McDonnell, J.: Orbital precession due to central-force perturbations. Phys. Rev. D 75, id. 082001 (2007)

    Google Scholar 

  73. Iorio, L.: Solar System motions and the cosmological constant: a new approach. Adv. Astron. 2008, art. id. 268647 (2008)

  74. Iorio, L.: Can Solar System observations tell us something about the cosmological constant? Int. J. Mod. Phys. D 15, 473 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  75. Islam, J.N.: The cosmological constant and classical tests of general relativity. Phys. Lett. A 97, 239 (1983)

    Article  MathSciNet  Google Scholar 

  76. Jetzer, P.h., Sereno, M.: Two-body problem with the cosmological constant and observational constraints. Phys. Rev. D 73, 044015 (2006)

    Article  Google Scholar 

  77. Arakida, H.: Note on the perihelion/periastron advance due to cosmological constant. Int. J. Theor. Phys. 52, 1408 (2013)

    Article  Google Scholar 

  78. Kerr, A.W., Hauck, J.C., Mashhoon, B.: Standard clocks, orbital precession and the cosmological constant. Class. Quantum Gravity 20, 2727 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  79. Arakida, H., Kasai, M.: Effect of the cosmological constant on the bending of light and the cosmological lens equation. Phys. Rev. D 85, id. 023006 (2012)

    Google Scholar 

  80. Biressa, T., de Freits Pacheco, J.A.: The cosmological constant and the gravitational light bending. Gen. Relativ. Gravit. 43, 2649 (2011)

    Article  MATH  Google Scholar 

  81. Ishak, M., Rindler, W.: The relevance of the cosmological constant for lensing. Gen. Relativ. Gravit. 42, 2247 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  82. Lake, K.: Bending of light and the cosmological constant. Phys. Rev. D 65, id. 087301 (2002)

    Google Scholar 

  83. Rindler, W., Ishak, M.: Contribution of the cosmological constant to the relativistic bending of light revisited. Phys. Rev. D 76, id. 043006 (2007)

    Google Scholar 

  84. Calura, M., Fortini, P., Montanari, E.: Post-Newtonian Lagrangian planetary equations. Phys. Rev. D 56, 4782 (1997)

    Article  Google Scholar 

  85. Calura, M., Montanari, E., Fortini, P.: Lagrangian planetary equations in Schwarzschild spacetime. Class. Quantum Gravity 15, 3121 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  86. Pitjeva, E.V., Pitjev, N.P.: Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft. Sol. Syst. Res. 46, 78 (2012)

    Article  Google Scholar 

  87. Burgess, C.P., Cloutier, J.: Astrophysical evidence for a weak new force?. Phys. Rev. D 38, 2944 (1988)

    Article  Google Scholar 

  88. Talmadge, C., Berthias, J.-.P., Hellings, R.W., Standish, E.M.: Model-independent constraints on possible modifications of Newtonian gravity. Phys. Rev. Lett. 61, 1159 (1988)

    Article  Google Scholar 

  89. Sereno, M., Jetzer, P.h.: Dark matter versus modifications of the gravitational inverse-square law: results from planetary motion in the Solar System. Mon. Not. R. Astron. Soc. 371, 626 (2006)

    Article  Google Scholar 

  90. Moffat J.W.: Scalar tensor vector gravity theory. J. Cosmol. Astropart. Phys. 2006(03), id. 004 (2006)

  91. Reynaud, S., Jaekel, M.-.T.: Testing the Newton law at long distances. Int. J. Mod. Phys. A 20, 2294 (2005)

    Article  MATH  Google Scholar 

  92. Iorio, L.: Constraints on a Yukawa gravitational potential from laser data of LAGEOS satellites. Phys. Lett. A 298, 315 (2002)

    Article  Google Scholar 

  93. Iorio, L.: Constraints on the range λ of Yukawa-like modifications to the Newtonian inverse-square law of gravitation from Solar System planetary motions. J. High Energy Phys. 2007(10), id. 041 (2007)

  94. Iorio, L.: Putting Yukawa-like modified gravity (MOG) on the test in the Solar System. Sch. Res. Exch. 2008, art. id. 238385 (2008)

  95. Sanders, R.H.: Solar System constraints on multifield theories of modified dynamics. Mon. Not. R. Astron. Soc. 370, 1519 (2006)

    Article  Google Scholar 

  96. Brownstein JR, Moffat JW (2006) Gravitational solution to the Pioneer 10/11 anomaly. Class. Quantum Gravity 23, 3427

    Google Scholar 

  97. Iorio, L.: On a Recently Proposed Scalar–Tensor–Vector Metric Extension of General Relativity to Explain the Pioneer Anomaly. arXiv: astro-ph/0608538 v. 3 (2006).

  98. Anderson, J.D.; Morris, J.R.: Brans–Dicke theory and the Pioneer anomaly. Phys. Rev. D 86, id. 064023 (2012)

    Google Scholar 

  99. Turyshev, S.G., Toth, V.K., Ellis, J., Markwardt, C.B.: Support for temporary behavior of the Pioneer anomaly from the extended Pioneer 10 and 11 Doppler data sets. Phys. Rev. Lett. 107, 081103 (2011)

    Google Scholar 

  100. Turyshev, S.G., Toth, V.K., Kinsella, G., Lee, S.-.C., Lok, S.M., Ellis, J.: Support for the thermal origin of the Pioneer anomaly. Phys. Rev. Lett. 108, 241101 (2012)

    Article  Google Scholar 

  101. Anderson, J.D., Morris, J.R.: Chameleon effect and the Pioneer anomaly. Phys. Rev. D 85, 084017 (2012)

    Article  Google Scholar 

  102. Anderson, J.D., Schubert, G.: Rhea’s gravitational field and interior structure inferred from the archival data files of the 2005 Cassini flyby. Phys. Earth Planet. Inter. 178, 176 (2010)

    Article  Google Scholar 

  103. Rievers, B., Lämmerzal, C.: High precision thermal modelling of complex systems with application to the flyby and Pioneer anomaly. Ann. Phys. (Berlin) 523, 439 (2011)

    Article  Google Scholar 

  104. Illumination for computer generated pictures. Commun. ACM 18, 311 (1975)

    Article  Google Scholar 

  105. He, D.X., Torrance, K.E., Silion, F.X., Greenberg, D.P.: A comprehensive physical model for light reflection. Comput. Graph. 25, 175 (1991)

    Article  Google Scholar 

  106. Irawan, P., Marschner, S.: Specular reflection from woven cloth. ACM Trans. Graph. 31, 11 (2012)

    Article  Google Scholar 

  107. Exirifard, Q.: Constraints on f(R ijkl R ijkl) gravity: an evidence against the covariant resolution of the Pioneer anomaly. arXiv: 0708.0662 [gr-gc] (2007)

  108. Nieto, M.M.: Analytic Gravitational-Force Calculations for Models of the Kuiper Belt, With Application to the Pioneer Anomaly. arXiv: astro-ph/0506281 v. 3 (2005).

Download references

Acknowledgments

I would like to thank Professor B. Lesyng for the opportunity to carry out computations using Mathematica texttrademark 7 in the Centre of Excellence BioExploratorium, Faculty of Physics, University of Warsaw. I would like to thank an anonymous referee for critical remarks to improve my paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Kalinowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinowski, M.W. Preliminary applications of the nonsymmetric Kaluza–Klein (Jordan–Thiry) theory to Pioneer 10 and 11 spacecraft anomalous acceleration. CEAS Space J 5, 19–37 (2013). https://doi.org/10.1007/s12567-013-0042-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-013-0042-9

Keywords

Navigation