CEAS Space Journal

, Volume 4, Issue 1–4, pp 41–46 | Cite as

Link budget analysis for future E-band gigabit satellite communication links (71–76 and 81–84 Ghz)

  • U. J. Lewark
  • J. Antes
  • J. Walheim
  • J. Timmermann
  • T. Zwick
  • I. Kallfass
Original Paper


The paper shows the feasibility of a satellite-earth downlink in E-band (60–90 GHz) taking into account both the expected channel attenuation and hardware characteristics. For low earth orbit (LEO) applications, the attenuation and the link are studied as a function of the elevation angle seen at the ground station. Link budget calculations for a realistic scenario indicating the feasibility of broadband and multi-gbit/s E-band communication between LEO satellites and ground stations with available receive antenna sizes and availabilities above 98% are presented. Additionally, a possible E-band geostationary earth orbit (GEO) link budget with 5 Gbit/s of data rate is presented, including atmospheric losses.


Satellite communication E-band communication E-band availability Broadband communication link 



This work was supported by the German Federal Ministry of Economics and Technology (BMWi) in the frame of the GISALI project under grant number 50YB1125.


  1. 1.
    Jebril, A., Lucente, M., Ruggieri, M., Rossi, T.: “W-band satellite transmission in the WAVE mission”, International Conference on Telecommunications & Multimedia (2006)Google Scholar
  2. 2.
    Shambayati, S.: “On the use of W-band for deep space communications”, IPN Progress Report 42–154, 15. August 2003Google Scholar
  3. 3.
    Antes,J., Lewark, U.J., Tessmann, A., Wagner, S., Leuther, A., Zwick, T, Kallfass, I.: “MMIC-based chipset for multi-gigabit satellite links in E-band”, IEEE International Conference on Wireless information technology and systems (ICWITS) Nov 2012Google Scholar
  4. 4.
    Tessmann, A., Kuri, M., Riessle, M., Massler, H., Zink, M., Reinert, W., Bronner, W, Leuther, A.: “A compact W-band dual-channel receiver module”, IEEE MTT-S International Microwave Symposium Digest, pp. 85–88, 11–16 June 2006Google Scholar
  5. 5.
    Tessmann, A., Kallfass, I., Leuther, A., Massler, H., Kuri, M., Riessle, M., Zink, M., Sommer, R., Wahlen, A., Essen, H., Hurm, V., Schlechtweg, M., Ambacher, O.: Metamorphic HEMT MMICs and modules for use in a high-bandwidth 210 GHz radar. IEEE J. Solid-State Circuits 43(10), 2194–2205 (2008)CrossRefGoogle Scholar
  6. 6.
    Samoska, L.A.: “An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime” IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 9–24, Sept 2011Google Scholar
  7. 7.
    Nakasha, Y., Masuda, S., Makiyama, K., Ohki, T., Kanamura, M., Okamoto, N., Tajima, T., Seino, T., Shigematsu, H., Imanishi, K., Kikkawa, T., Joshin, K., Hara, N.: “E-band 85-mW oscillator and 1.3-W amplifier ICs using 0.12 μm GaN HEMTs for millimeter-wave transceivers” IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp. 1–4, 3–6 Oct 2010Google Scholar
  8. 8.
    Gavell, M., Ferndahl, M., Gunnarsson, S.E., Abbasi, M., Zirath, H: “An image reject mixer for high-speed E-band (71–76, 81–86 GHz) wireless communication” Annual IEEE Compound Semiconductor Integrated Circuit Symposium. CISC 2009, pp. 1–4, 11–14 Oct 2009Google Scholar
  9. 9.
    Johansen, T.K., Krozer, V: “An InP HBT sub-harmonic mixer for E-band wireless communication” European Microwave Integrated Circuits Conference (EuMIC) pp. 198–201, Sept 2010Google Scholar
  10. 10.
    Sanming Hu, Yong-Zhong Xiong, Lei Wang, Jinglin Shi, Teck-Guan Lim, “A 77–135 GHz down-conversion IQ mixer for 10 Gbps multiband applications” 13th International Symposium on Integrated Circuits (ISIC) pp. 29–34, 12–14 Dec 2011Google Scholar
  11. 11.
    Zyren, J., Petrick, A: Tutorial on basic link budget analysis intersil TM, Application note AN9804.1, June 1998, available at:
  12. 12.
    Recommendation ITU-R P.676-9 Attenuation by atmospheric gases (2012)Google Scholar
  13. 13.
    Ippolito, L. J.: Satellite communications systems engineering: atmospheric effects, satellite link design and system performance, Wiley, UK, 2008Google Scholar
  14. 14.
    Recommendation ITU-R P.835-4 Reference standard atmospheres (2005)Google Scholar
  15. 15.
    Recommendation ITU-R P.840-4 Attenuation due to clouds and fog (2009)Google Scholar
  16. 16.
    Recommendation ITU-R P.838-3 Specific attenuation model for rain for use in prediction methods (2005)Google Scholar
  17. 17.
    Recommendation ITU-R P.618-10 Propagation data and prediction methods required for the design of Earth-space telecommunication systems (2009)Google Scholar
  18. 18.
    Recommendation ITU-R P.839-3 Rain height model for prediction methods (2001)Google Scholar
  19. 19.
    Recommendation ITU-R P.837-5 Characteristics of precipitation for propagation modeling (2007)Google Scholar
  20. 20.
    Sheng-Yi Li, Liu, C.H: “An analytical model to predict the probability density function of elevation angles for LEO satellite systems” IEEE Communications Letters vol. 6, no. 4, pp. 138–140, April 2002Google Scholar

Copyright information

© CEAS 2013

Authors and Affiliations

  • U. J. Lewark
    • 1
  • J. Antes
    • 1
  • J. Walheim
    • 1
  • J. Timmermann
    • 2
  • T. Zwick
    • 1
  • I. Kallfass
    • 1
  1. 1.Institut für Hochfrequenztechnik und Elektronik (IHE)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Astrium GmbHFriedrichshafenGermany

Personalised recommendations