Skip to main content
Log in

Multi-frequency dynamic absorber for improved spacecraft comfort during the launch phase

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

In this paper, a methodology to design a multi-frequency dynamic absorber for spacecrafts during the launch phase is presented. A dynamic absorber is a mechanical device which is able to reduce the magnitude of vibration imposed upon a primary structure. The modelling of dynamic coupling between the absorber and satellite is carried out via finite-element (FE) analysis of the coupled structure. The satellite response has been calculated to identify the contribution of the dynamic absorber and to quantify how such a device can improve the overall mechanical environment for the spacecraft during launch. Indeed, an analytical model is used to find relations and conditions to tune the multi-frequency absorber on satellite dynamics in order to improve the payload comfort within a specific frequency band. The feasibility and effectiveness of installing a dynamic absorber has been also illustrated by simulating the behaviour of the coupled absorber–satellite system via FE analysis for an actual case of a satellite vibration control. The results have confirmed the expectations of theoretical approach and modelling and have assessed the capability of the proposed design methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ormondroyd, J., Den Hartog, J.P.: Theory of the dynamic vibration absorber. Trans. ASME. 9–22 (1928)

  2. Den Hartog, J.P.: Mechanical Vibrations. McGraw Hill, New York (1956)

  3. de Silva, C.W.: Vibration Damping, Control, and Design. CRC Press, Boca Raton (2007)

  4. Asami, T., Nishihara, O., Baz, A.M.: Analytical solutions to H and H 2 optimization of dynamics vibration absorbers attached to damped linear systems. J. Vib. Acoust. 124, 284–296 (2002)

    Article  Google Scholar 

  5. Jang, S.J., Choi, Y.J.: Geometrical design method of multi degree of freedom vibration absorber. J. Sound Vib. 303, 343–356 (2007)

    Google Scholar 

  6. Zuo, L., Nayfeh, S.A.: MiniMax optimization of multi-degree-of-freedom tuned-mass dampers. J. Sound Vib. 272, 893–908 (2004)

    Article  Google Scholar 

  7. Ozer, M.B., Royston, T.J.: Extending Den Hartog’s vibration absorber techinique to multi-degree-of-freedom systems. J. Vib. Acoust. 127, 341–351 (2005)

    Article  Google Scholar 

  8. Liu, L.K., Zheng, G.T.: Parameter analysis of PAF for whole-spacecraft vibration isolation. Aerosp. Sci. Technol. 11(6), 464–472 (2007)

    Article  MATH  Google Scholar 

  9. Wilke, P.S., Johnson, C.D., Grosserode, P., Sciulli, D.: Whole-spacecraft vibration isolation for broadband attenuation. IEEE Aerosp. Conf. Proc. 4, 315–321 (2000)

    Google Scholar 

  10. Johnson, C.D., Wilke, P.S., Pendleton, S.C.: SoftRide vibration and shock isolation systems that protect spacecraft from launch dynamic environments. In: Proceedings of the 38th Aerospace Mechanisms Symposium, Langley Research Center, May 15–17, 2006

  11. Johnson, C.D., Wilke, P.S.: The whole-spacecraft vibration isolation system-Its time has come. In: Johal, R.S., Wilke, P.S., Johnson, C.D.: Satellite Component Load Reduction using SoftRide. AIAA paper 99-4467. AIAA/6th Responsive Space Conference 2008

  12. Evert, M.E., Janzen, P.C., Anderson, E.H.: Active Vibration Isolation System for Launch Load Alleviation. Smart Structures and Materials. Paper 5388-05 (2004)

  13. Rittweger, A., Beig, H., Konstanzer, P., Dacal, R.B.: Feasibility demonstration of an active payload adapter for Ariane 5. In: European Conference on Spacecraft Structures, Materials and Mechanical Testing, pp. 1241–1251 (2005)

  14. Chen, J., Fang, B., Yang, T., Huang, W.: Study of whole-spacecraft vibration isolators based on reliability method. Chin. J. Aeronaut. 22, 153 (2009)

    Google Scholar 

  15. Fei, H.Z., Zheng, G.T., Liu, Z.G.: An investigation into active vibration isolation based on predictive control. Part I: energy source control. J. Sound Vib. 296, 195–208 (2006)

    Article  Google Scholar 

  16. Pierrick, J.: Isolation vibratoire par controle semi-actif d’amortisseurs magnéto-rhéologiques pour l’interface lanceur-charge utile. Thése de doctorat: Mécanique; CNAM, Paris (2006)

  17. Géradin, M., Rixen, D.: Mechanical Vibrations. Wiley, New York (1997)

  18. Calvi, A.: Uncertainty-based loads analysis for spacecraft: Finite element model validation and dynamic responses. Comput. Struct. 83(14), 1103–1112 (2005)

    Article  Google Scholar 

  19. Pellissetti, M.F., Fransen, S.H.J.A., Pradlwarter, H.J., Calvi, A., Kreis, A., Schuller, G.I., Klein, M.: Stochastic launcher-satellite coupled dynamic analysis. J. Spacecr. Rockets 43(6), 1308–1318 (2006)

    Article  Google Scholar 

  20. Fransen, S.: Methodologies for launcher-payload coupled dynamic analysis. European Space Agency (Special Publication), ESA SP 581, pp. 987–999 (2005)

  21. Bernstein, D.: Matrix Mathematics. Princeton University Press, Princeton (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Mastroddi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastroddi, F., Facchini, G. & Gaudenzi, P. Multi-frequency dynamic absorber for improved spacecraft comfort during the launch phase. CEAS Space J 3, 77–88 (2012). https://doi.org/10.1007/s12567-012-0026-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-012-0026-1

Keywords

Navigation