CEAS Space Journal

, Volume 3, Issue 1–2, pp 49–59 | Cite as

Weak stability boundary transfer to the Moon from GTO as a piggyback payload on Ariane 5

  • Dominik Quantius
  • Jörn Spurmann
  • Erwin Dekens
  • Hartmut Päsler
Original Paper


In cooperation with the German non-profit amateur satellite organisation (AMSAT-DL), the German Aerospace Center developed the idea of using AMSAT’s Earth satellite P3-D as a baseline for a Moon mission. For cost-effectiveness, P3-D was launched as an auxiliary payload on Ariane 5 into a geosynchronous transfer orbit (GTO) and used its on-board propulsion system to achieve a Molniya orbit. The present study describes how a similar satellite can reach a 100 × 100 km lunar orbit with the same launch strategy. A delta-v saving transfer scenario using the weak stability boundary transfer was found to be feasible taking a P3-D-like satellite bus into account. It contains phasing orbits as a solution for non-dedicated launch dates and deals with the constraints of Ariane’s GTO. This approach opens up the opportunity to accomplish a low-cost mission to the Moon with public and scientific value.


DLR-AMSAT P5 Moon WSB Auxiliary payload Open source Lunar orbit Low-cost satellite Lunar television 


  1. 1.
    AMSAT Germany. http://www.amsat-dl.org. Viewed 9 Nov 2011
  2. 2.
    AMSAT OSCAR-40, AMSAT International. http://www.amsat.org/amsat-new/satellites/sat_summary/ao40.php. Viewed 9 Nov 2011
  3. 3.
    DLR Concurrent Engineering Facility. http://www.dlr.de/irs/en/desktopdefault.aspx/tabid-7174/11938_read-28186/. Viewed 9 Nov 2011
  4. 4.
    Romberg, O., Braukhane, A., Schumann, H.: Status of the Concurrent Engineering Facility at DLR Bremen. Deutscher Luft- und Raumfahrtkongress, Darmstadt (2008)Google Scholar
  5. 5.
    Quantius, D., Päsler, H., Braukhane, A., Gülzow, P., Bauer, W., Vollhardt, A., Schubert, D., Romberg, O.: Open Source Mission to the Moon. IAC, Praha (2010)Google Scholar
  6. 6.
    Ariane Space: Launch Kit, 2006–present. http://www.arianespace.com/news-launch-kits/2006-2010-archive.asp. Accessed 9 Nov 2011
  7. 7.
  8. 8.
    Biesbroek, R., Janin, G.: Ways to the Moon, August 2000, ESA Bulletin 103Google Scholar
  9. 9.
    Hohmann, W.: Die Erreichbarkeit der Himmelskörper. Verlag Oldenbourg in München, Germany (1925). ISBN 3-486-23106-5Google Scholar
  10. 10.
    Belbruno, E.A., Miller, J.: Sun-perturbed Earth-to-Moon transfer with ballistic capture. J. Guid. Control Dyn. 16(4), 770–775 (1993)CrossRefGoogle Scholar
  11. 11.
    Spurman, J.: Lunar transfer trajectories document no. Issue 1.0 TN 10-02, 2010, GSOC, GermanyGoogle Scholar
  12. 12.
    Belbruno, E.A., Carrico, J.P.: Calculation of weak stability boundary ballistic lunar transfer trajectories, AIAA 200-4142, Denver, COGoogle Scholar
  13. 13.
    Koon, W.S., Lo, M.W., Mardsen, J.E., Ross, S.D.: Low energy transfer to the Moon, dynamics of natural and artificial celestial bodies. In: Proceedings of the US/European Celestial Mechanics Workshop, Poznan, Poland (2000)Google Scholar
  14. 14.
    Vetrisano, M., Vasile, M.: Navigation strategies and contingency analysis for the european student moon orbiter. IAC, Cape Town (2011)Google Scholar

Copyright information

© CEAS 2012

Authors and Affiliations

  • Dominik Quantius
    • 1
  • Jörn Spurmann
    • 3
  • Erwin Dekens
    • 1
  • Hartmut Päsler
    • 2
  1. 1.DLR German Aerospace CenterBremenGermany
  2. 2.AMSAT-DLMarburgGermany
  3. 3.DLR German Aerospace CenterOberpfaffenhofenGermany

Personalised recommendations