Skip to main content
Log in

Simulation of a GOX–kerosene subscale rocket combustion chamber

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

In view of future film cooling tests at the Institute for Flight Propulsion (LFA) at Technische Universität München, the Astrium in-house spray combustion CFD tool Rocflam-II was validated against first test data gained from this rocket test bench without film cooling. The subscale rocket combustion chamber uses GOX and kerosene as propellants which are injected through a single double swirl element. Especially the modeling of the double swirl element and the measured wall roughness were adapted on the LFA hardware. Additionally, new liquid kerosene fluid properties were implemented and verified in Rocflam-II. Also the influences of soot deposition and hot gas radiation on the wall heat flux were analytically and numerically estimated. In context of reviewing the implemented evaporation model in Rocflam-II, the binary diffusion coefficient and its pressure dependency were analyzed. Finally simulations have been performed for different load points with Rocflam-II showing a good agreement compared to test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

GOX:

Gaseous oxygen

LFA:

Institute for Flight Propulsion, Technische Universität München

LP:

Load point

RANS:

Reynolds averaged Navier–Stokes-equations

Rocflam-II:

2D two-phase Navier–Stokes code by Astrium (Rocket Flow Analysis Module)

RCFS-II:

1D engineering tool by Astrium (Regenerative Coolant Flow Simulation)

A inj :

Injection area (m2)

A t :

Throat area (m2)

c D :

Discharge coefficient (–)

k :

Turbulent kinetic energy (m2/s2)

\( L^{*} \) :

Characteristic length (m)

\( \dot{m}_{\text{inj}} \) :

Injected mass flow (kg/s)

\( \dot{m} \) :

Total mass flow (kg/s)

M :

Molar mass (kg/kmol)

O/F :

Mixture ratio [–], \( {\raise0.7ex\hbox{$O$} \!\mathord{\left/ {\vphantom {O F}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$F$}} = \frac{{\dot{m}_{\text{Oxidizer}} }}{{\dot{m}_{\text{Fuel}} }} \)

P c :

Chamber pressure (bar)

\( \dot{Q}_{\text{int}} \) :

Integral heat load (kW)

R a :

Mean roughness index (μm)

T :

Temperature (K)

V :

Volume of diffusion (–)

V c :

Chamber volume (m3)

Δp inj :

Pressure drop over injection element (bar)

ρ inj :

Density of injected propellants (kg/m3)

ε :

Dissipation rate (m2/s3)

λ :

Heat conductivity (W/(mK))

δ :

Thickness (m)

ζ :

Constant factor (–)

η c* :

Combustion efficiency (%)

References

  1. Frey, M., Kniesner, B., Knab, O.: Consideration of real gas effects and condensation in a spray combustion rocket thrust chamber design tool. EUCASS2009-85, 3th European Conference for Aerospace Sciences, Versailles, France, 6–8 July 2009a

  2. Görgen, J., Aichner, T., Frey, M.: Spray combustion and heat transfer modeling in lox/h2, lox/hc and mmh/nto combustion chamber. EUCASS2009-104, 3th European Conference for Aerospace Sciences, Versailles, France, 6–8 July 2009

  3. Schlieben, G., Höglauer, C.: First experimental and analytical results of film cooling investigations with a gox/kerosene combusion chamber. TransRegio40—Annual Report (2009)

  4. Mäding, C. Wiedmann, D., Quering, K., Knab, O.: Improved heat transfer prediction engineering capabilities for rocket thrust chamber layout. EUCASS2009-90, 3th European Conference for Aerospace Sciences, Versailles, France, 6–8 July 2009

  5. Rachner, M.: DIE STOFF-EIGENSCHAFTEN VON KEROSIN JET A-1. Mitteilung 98-01. Institut für Luft- und Raumfahrt e. V. Köln. (1998)

  6. Gordon, S., McBride, B.: Computer program for calculation of complex chemical equilibrium compositions and applications. USA. NASA Reference Publication 1311

  7. Kniesner, B., Frey, M., Knab, O.: Vorhersage des wandtemperaturverlaufs in raketenbrenn-kammern unter berücksichtigung zeitlich und örtlicher wandrauhigkeitsentwicklungen. DGLR2010-161237 Deutscher Luft- und Raumfahrtkongress Hamburg, Germany, 31 Aug–2 Sep 2010

  8. Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. AIAA-88-0636. University of California (1988)

  9. Poling, B.E., Prausnitz, J.M., O′Connell.: The properties of gases and liquids. McGraw-Hill. 4th Edn (1995)

  10. Wärmeatlas, VDI.: 10. Auflage. Springer Verlag (2006)

  11. Seong-Ku Kim, Hwan Seok Choi.: Preliminary analysis of lox/kerosene rocket thrust chamber with a c/c nozzle extension. Korea Aerospace Research Institute. Daejeon Korea

  12. Kaupp, A.: The soot and scale problems www.energymanagertraining.com

  13. Schack, A.: DER INDUSTRIELLE WÄRMEÜBERGANG. 8. Auflage. Verlag Stahleisen MBH. (1983)

  14. Kirchberger, C., Soller, S., Bouchez, M.: Prediction and analysis of heat transfer in small rocket chambers. AIAA-2008-1260, in: 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 7th–10th 2008

  15. Schmidt, G.: Technik der Flussigkeitsraketen-Triebwerke. DaimlerChrysler Aerospace (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Höglauer.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 27–29, 2011, Bremen, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höglauer, C., Kniesner, B., Knab, O. et al. Simulation of a GOX–kerosene subscale rocket combustion chamber. CEAS Space J 2, 31–40 (2011). https://doi.org/10.1007/s12567-011-0017-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-011-0017-7

Keywords

Navigation