Skip to main content

Imaging of spine synapses using super-resolution microscopy

Abstract

Neuronal circuits in the neocortex and hippocampus are essential for higher brain functions such as motor learning and spatial memory. In the mammalian forebrain, most excitatory synapses of pyramidal neurons are formed on spines, which are tiny protrusions extending from the dendritic shaft. The spine contains specialized molecular machinery that regulates synaptic transmission and plasticity. Spine size correlates with the efficacy of synaptic transmission, and spine morphology affects signal transduction at the post-synaptic compartment. Plasticity-related changes in the structural and molecular organization of spine synapses are thought to underlie the cellular basis of learning and memory. Recent advances in super-resolution microscopy have revealed the molecular mechanisms of the nanoscale synaptic structures regulating synaptic transmission and plasticity in living neurons, which are difficult to investigate using electron microscopy alone. In this review, we summarize recent advances in super-resolution imaging of spine synapses and discuss the implications of nanoscale structures in the regulation of synaptic function, learning, and memory.

This is a preview of subscription content, access via your institution.

Fig. 1

(reproduced from Kashiwagi et al. 2019)

Fig. 2

(reproduced from Wegner et al. 2018)

Fig. 3

(reproduced from Sidenstein et al. 2016)

Fig. 4

(reproduced from Kashiwagi et al. 2019)

Fig. 5

(reproduce from Kashiwagi et al. 2019)

Fig. 6

(reproduced from Kashiwagi et al. 2019)

Fig. 7

References

  1. Arellano JI (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1:131–143

    PubMed Central  PubMed  Google Scholar 

  2. Attardo A, Fitzgerald JE, Schnitzer MJ (2015) Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 523:592–596

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Baddeley D, Bewersdorf J (2018) Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu Rev Biochem 87:965–989

    CAS  Google Scholar 

  4. Bär J, Kobler O, Van Bommel B, Mikhaylova M (2016) Periodic F-actin structures shape the neck of dendritic spines. Sci Rep 6:1–9

    Google Scholar 

  5. Berning S, Willig KI, Steffens H et al (2012) Nanoscopy in a living mouse brain. Science 335:551

    CAS  Google Scholar 

  6. Bethge P, Chéreau R, Avignone E et al (2013) Two-photon excitation STED microscopy in two colors in acute brain slices. Biophys J 104:778–785

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CAS  Google Scholar 

  8. Biederer T, Kaeser PS, Blanpied TA (2017) Transcellular nanoalignment of synaptic function. Neuron 96:680–696

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bosch M, Castro J, Saneyoshi T et al (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82:444–459

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Brakemann T, Stiel AC, Weber G et al (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29:942–950

    CAS  Google Scholar 

  12. Broadhead MJ, Horrocks MH, Zhu F et al (2016) PSD95 nano-clusters are post-synaptic building blocks in hippocampus circuits. Sci Rep 6:1–14

    Google Scholar 

  13. Chamma I, Letellier M, Butler C et al (2016) Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat Commun 7:1–15

    Google Scholar 

  14. Chang JB, Chen F, Yoon YG et al (2017) Iterative expansion microscopy. Nat Methods 14:593–599

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Chazeau A, Mehidi A, Nair D et al (2014) Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion. EMBO J. https://doi.org/10.15252/embj.201488837

    Article  PubMed Central  PubMed  Google Scholar 

  16. Chen F, Tillberg PW, Boyden ES (2015) Expansion microscopy. Science 347:543–548

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Chen F, Wassie AT, Cote AJ et al (2016) Nanoscale imaging of RNA with expansion microscopy. Nat Methods 13:679–684

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Chen H, Tang AH, Blanpied TA (2018) Subsynaptic spatial organization as a regulator of synaptic strength and plasticity. Curr Opin Neurobiol 51:147–153

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Choquet D (2018) Linking nanoscale dynamics of AMPA receptor organization to plasticity of excitatory synapses and learning. J Neurosci 38:9318–9329

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Chéreau R, Tønnesen J, Nägerl UV (2015) STED microscopy for nanoscale imaging in living brain slices. Methods 88:57–66

    Google Scholar 

  21. Cho T, Kashiwagi Y, Okabe S (2019) Temporal sequences of synapse disintegration triggered by afferent axon transection, time-lapse imaging study of pre-synaptic and post-synaptic molecules. eNeuro 6:1–13

    Google Scholar 

  22. Chozinski TJ, Halpern AR, Okawa H et al (2016) Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods 13:485–488

    CAS  PubMed Central  PubMed  Google Scholar 

  23. D’Este E, Kamin D, Göttfert F et al (2015) STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep 10:1246–1251

    Google Scholar 

  24. Dani A, Huang B, Bergan J et al (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68:843–856

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Danzl JG, Sidenstein SC, Gregor C et al (2016) Coordinate-targeted fluorescence nanoscopy with multiple off states. Nat Photonics 10:122–128

    CAS  Google Scholar 

  26. De Luca GMR, Breedijk RMP, Brandt RAJ et al (2013) Re-scan confocal microscopy: scanning twice for better resolution. Biomed Opt Express 4:2644

    PubMed Central  PubMed  Google Scholar 

  27. Diering GH, Huganir RL (2018) The AMPA receptor code of synaptic plasticity. Neuron 100:314–329

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Fifková E, Anderson CL (1981) Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp Neurol 74:621–627

    Google Scholar 

  29. Frost NA, Shroff H, Kong H et al (2010) Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67:86–99

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Fukata Y, Dimitrov A, Boncompain G et al (2013) Local palmitoylation cycles define activity-regulated post-synaptic subdomains. J Cell Biol 202:145–161

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gao R, Asano S, Upadhyayula S et al (2019) Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363:eaau8302

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Giannone G, Hosy E, Levet F et al (2010) Dynamic super-resolution imaging of endogenous proteins on living cells at ultra-high density. Biophys J 99:1303–1310

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Glebov OO, Cox S, Humphreys L, Burrone J (2016) Neuronal activity controls transsynaptic geometry. Sci Rep. https://doi.org/10.1038/srep22703

    Article  PubMed Central  PubMed  Google Scholar 

  34. Glebov OO, Jackson RE, Winterflood CM et al (2017) Nanoscale structural plasticity of the active zone matrix modulates pre-synaptic function. Cell Rep 18:2715–2728

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Göttfert F, Pleiner T, Heine J et al (2017) Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc Natl Acad Sci USA 114:2125–2130

    PubMed  Google Scholar 

  36. Griffiths VA, Valera AM, Lau JYN et al (2020) Real-time 3D movement correction for two-photon imaging in behaving animals. Nat Methods 17:741–748

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Grotjohann T, Testa I, Leutenegger M et al (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478:204–208

    CAS  PubMed  Google Scholar 

  38. Guo Y, Di LD, Zhang S et al (2018) Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175:1–13

    Google Scholar 

  39. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    CAS  PubMed  Google Scholar 

  40. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: Widefield fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102:13081–13086

    CAS  PubMed  Google Scholar 

  41. Gustafsson MGLL, Shao L, Carlton PM et al (2008) Three-dimensional resolution doubling in widefield fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Gwosch KC, Pape JK, Balzarotti F et al (2020) MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods 17:217–224

    CAS  PubMed  Google Scholar 

  43. Harris KM (2020) Synaptic odyssey. J Neurosci 40:61–80

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Hayashi S, Okada Y (2015) Ultrafast super-resolution fluorescence imaging with spinning disk confocal microscope optics. Mol Biol Cell 26:1743–1751

    CAS  PubMed Central  PubMed  Google Scholar 

  46. He J, Zhou R, Wu Z et al (2016) Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci USA 113:6029–6034

    CAS  PubMed  Google Scholar 

  47. Heine J, Reuss M, Harke B et al (2017) Adaptive-illumination STED nanoscopy. Proc Natl Acad Sci USA 114:9797–9802

    CAS  PubMed  Google Scholar 

  48. Heintzmann R, Cremer CG (1999) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc SPIE 3568 Opt Biopsies Microsc Tech III. https://doi.org/10.1117/12.336833

    Article  Google Scholar 

  49. Heintzmann R, Huser T (2017) Super-resolution structured illumination microscopy. Chem Rev 117:13890–13908

    CAS  PubMed  Google Scholar 

  50. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355

    CAS  PubMed  Google Scholar 

  51. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780

    CAS  PubMed  Google Scholar 

  52. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    CAS  PubMed  Google Scholar 

  53. Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2:880–888

    CAS  PubMed  Google Scholar 

  54. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Higashi T, Tanaka S, Ida T, Okabe S (2018) Synapse elimination triggered by BMP4 exocytosis and pre-synaptic BMP receptor activation. Cell Rep 22:919–929

    CAS  PubMed  Google Scholar 

  56. Hirano Y, Matsuda A, Hiraoka Y (2015) Recent advancements in structured-illumination microscopy toward live-cell imaging. Microscopy 64:237–249

    CAS  PubMed  Google Scholar 

  57. Hirokawa N (1989) The arrangement of actin filaments in the post-synaptic cytoplasm of the cerebellar cortex revealed by quick-freeze deep-etch electron microscopy. Neurosci Res 6:269–275

    CAS  PubMed  Google Scholar 

  58. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102:17565–17569

    CAS  PubMed  Google Scholar 

  59. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658

    CAS  PubMed  Google Scholar 

  60. Honkura N, Matsuzaki M, Noguchi J et al (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57:719–729

    CAS  PubMed  Google Scholar 

  61. Hotulainen P, Hoogenraad CC (2010) Actin in dendritic spines: connecting dynamics to function. J Cell Biol 189:619–629

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hruska M, Henderson N, Le Marchand SJ et al (2018) Synaptic nanomodules underlie the organization and plasticity of spine synapses. Nat Neurosci 21:671–682

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Huang B, Jones SA, Brandenburg B, Zhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5:1047–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Inavalli VVGK, Lenz MO, Butler C et al (2019) A super-resolution platform for correlative live single-molecule imaging and STED microscopy. Nat Methods 16:1263–1268

    CAS  PubMed  Google Scholar 

  65. Isshiki M, Okabe S (2014) Evaluation of cranial window types for in vivo two-photon imaging of brain microstructures. Microscopy 63:53–63

    PubMed  Google Scholar 

  66. Isshiki M, Tanaka S, Kuriu T et al (2014) Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nat Commun 5:1–15

    Google Scholar 

  67. Iwasaki K, Obashi K, Okabe S (2020) Vasodilator-stimulated phosphoprotein (VASP) is recruited into dendritic spines via G-actin-dependent mechanism and contributes to spine enlargement and stabilization. Eur J Neurosci 51:806–821

    PubMed  Google Scholar 

  68. Izeddin I, Specht CG, Lelek M et al (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS ONE 6:e15611

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ji N (2017) Adaptive optical fluorescence microscopy. Nat Methods 14:374–380

    CAS  PubMed  Google Scholar 

  70. Kasai H, Fukuda M, Watanabe S et al (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33:121–129

    CAS  PubMed  Google Scholar 

  71. Kashiwagi Y, Higashi T, Obashi K et al (2019) Computational geometry analysis of dendritic spines by structured illumination microscopy. Nat Commun 10:1–14

    CAS  Google Scholar 

  72. Kawabata I, Kashiwagi Y, Obashi K et al (2012) LIS1-dependent retrograde translocation of excitatory synapses in developing interneuron dendrites. Nat Commun 3:722

    PubMed Central  PubMed  Google Scholar 

  73. Ke MT, Nakai Y, Fujimoto S et al (2016) Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep 14:2718–2732

    CAS  PubMed  Google Scholar 

  74. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781

    CAS  Google Scholar 

  75. Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210

    CAS  Google Scholar 

  76. Knott GW, Holtmaat A, Wilbrecht L et al (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 9:1117–1124

    CAS  Google Scholar 

  77. Korobova F, Svitkina T (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell 21:165–176

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Kuriu T, Inoue A, Bito H et al (2006) Differential control of post-synaptic density scaffolds via actin-dependent and -independent mechanisms. J Neurosci 26:7693–7706

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Leterrier C, Dubey P, Roy S (2017) The nano-architecture of the axonal cytoskeleton. Nat Rev Neurosci 18:713–726

    CAS  Google Scholar 

  80. Li D, Shao L, Chen BC et al (2015) Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349:aab3500

    PubMed Central  PubMed  Google Scholar 

  81. Li J, Sekine-Aizawa Y, Ebrahimi S et al (2019) Tumor suppressor protein CYLD regulates morphogenesis of dendrites and spines. Eur J Neurosci 50:2722–2739

    PubMed  Google Scholar 

  82. Li Z, Zhang Q, Chou S-W et al (2020) Fast widefield imaging of neuronal structure and function with optical sectioning in vivo. Sci Adv 6:eaaz3870

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Lukinavičius G, Reymond L, D’Este E et al (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11:731–733

    PubMed  Google Scholar 

  84. MacGillavry HD, Song Y, Raghavachari S, Blanpied TA (2013) Nanoscale scaffolding domains within the post-synaptic density concentrate synaptic ampa receptors. Neuron 78:615–622

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64:381–390

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Mandracchia B, Hua X, Guo C et al (2020) Fast and accurate sCMOS noise correction for fluorescence microscopy. Nat Commun 11:1–12

    Google Scholar 

  87. Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157

    CAS  Google Scholar 

  88. Mao C, Lee M, Jhan J et al (2020) Feature-rich covalent stains for super-resolution and cleared tissue fluorescence microscopy. Sci Adv 6:eaba4542

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Masch JM, Steffens H, Fischer J et al (2018) Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling. Proc Natl Acad Sci USA 115:E8047–E8056

    CAS  Google Scholar 

  90. Matsuzaki M, Ellis-Davies GCR, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82:430–443

    CAS  PubMed  Google Scholar 

  93. Nägerl UV, Willig KI, Hein B et al (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci 105:18982–18987

    Google Scholar 

  94. Nair D, Hosy E, Petersen JD et al (2013) Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 33:13204–13224

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Nixon-Abell J, Obara CJ, Weigel AV et al (2016) Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354:3928

    Google Scholar 

  96. Obashi K, Okabe S (2013) Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon. Eur J Neurosci 38:2350–2363

    Google Scholar 

  97. Obashi K, Matsuda A, Inoue Y, Okabe S (2019) Precise remporal regulation of molecular diffusion within dendritic spines by actin polymers during structural plasticity. Cell Rep 27:1503-1515.e8

    CAS  Google Scholar 

  98. Okabe S (2007) Molecular anatomy of the post-synaptic density. Mol Cell Neurosci 34:503–518

    CAS  Google Scholar 

  99. Okabe S (2013) Fluorescence imaging of synapse formation and remodeling. Microscopy 62:51–62

    CAS  Google Scholar 

  100. Okabe S (2020a) Recent advances in computational methods for measurement of dendritic spines imaged by light microscopy. Microscopy 69:196–213

    Google Scholar 

  101. Okabe S (2020b) Regulation of actin dynamics in dendritic spines: Nanostructure, moelecular mobility, and signaling mechanisms. Mol Cell Neurosci. https://doi.org/10.1016/j.mcn.2020.103564

    Article  Google Scholar 

  102. Okabe S, Kim HD, Miwa A et al (1999) Continual remodeling of post-synaptic density and its regulation by synaptic activity. Nat Neurosci 2:804–811

    CAS  Google Scholar 

  103. Okabe S, Urushido T, Konno D et al (2001) Rapid redistribution of the post-synaptic density protein PSD-Zip45 (Homer 1c) and Its differential regulation by NMDA receptors and calcium channels. J Neurosci 21:9561–9571

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Patton BR, Burke D, Owald D et al (2016) Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Opt Express 24:8862

    Google Scholar 

  105. Pfeiffer T, Poll S, Bancelin S et al (2018) Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo. eLife. https://doi.org/10.7554/eLife.34700

    Article  PubMed Central  PubMed  Google Scholar 

  106. Popov VI, Davies HA, Rogachevsky VV et al (2004) Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetised rat. Neuroscience 128:251–262

    CAS  Google Scholar 

  107. Rego EH, Shao L, Macklin JJ et al (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci USA 109:E135–E143

    CAS  Google Scholar 

  108. Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162:246–257

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685–701

    CAS  Google Scholar 

  111. Sakamoto H, Ariyoshi T, Kimpara N et al (2017) Synaptic weight set by Munc13-1 supramolecular assemblies. Nat Neurosci 21:41–49

    Google Scholar 

  112. Sawada K, Kawakami R, Shigemoto R, Nemoto T (2018) Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices. Eur J Neurosci 47:1033–1042

    PubMed Central  PubMed  Google Scholar 

  113. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Schermelleh L, Ferrand A, Huser T et al (2019) Superresolution microscopy demystified. Nat Cell Biol 21:72–84

    CAS  Google Scholar 

  115. Schulz O, Pieper C, Clever M et al (2013) Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proc Natl Acad Sci USA 110:21000–21005

    CAS  Google Scholar 

  116. Sheng M, Hoogenraad CC (2007) The post-synaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847

    CAS  Google Scholar 

  117. Shim SH, Xia C, Zhong G et al (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA 109:13978–13983

    CAS  Google Scholar 

  118. Shin SM, Zhang N, Hansen J et al (2012) GKAP orchestrates activity-dependent post-synaptic protein remodeling and homeostatic scaling. Nat Neurosci 15:1655–1666

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Siddig S, Aufmkolk S, Doose S et al (2020) Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at pre-synaptic active zones. Sci Adv 6:eaay7193

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Sidenstein SC, D’Este E, Böhm MJ et al (2016) Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci Rep 6:1–8

    Google Scholar 

  121. Sigal YMM, Speer CMM, Babcock HPP, Zhuang X (2015) Mapping synaptic input fields of neurons with super-resolution imaging. Cell 163:493–505

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Smith KR, Kopeikina KJ, Fawcett-Patel JM et al (2014) Psychiatric risk factor ANK3/ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses. Neuron 84:399–415

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Sorra KE, Harris KM (2000) Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10:501–511

    CAS  Google Scholar 

  124. Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17:190–203

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Spacek J, Harris KM (2004) Trans-endocytosis via spinules in adult rat hippocampus. J Neurosci 24:4233–4241

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    CAS  Google Scholar 

  127. Sugiyama Y, Kawabata I, Sobue K, Okabe S (2005) Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nat Methods 2:677–684

    CAS  Google Scholar 

  128. Sydor AM, Czymmek KJ, Puchner EM, Mennella V (2015) Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol 25:730–748

    CAS  Google Scholar 

  129. Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell super-resolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104:770–777

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Tang AH, Chen H, Li TP et al (2016) A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536:210–214

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Tatavarty V, Kim E-J, Rodionov V, Yu J (2009) Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS ONE 4:e7724

    PubMed Central  PubMed  Google Scholar 

  132. Testa I, Urban NT, Jakobs S et al (2012) Nanoscopy of living brain slices with low light levels. Neuron 75:992–1000

    CAS  Google Scholar 

  133. Tillberg PW, Chen F, Piatkevich KD et al (2016) Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteinsand antibodies. Nat Biotechnol 34:987–992

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Tønnesen J, Nägerl UV (2016) Dendritic spines as tunable regulators of synaptic signals. Front Psychiatry 7:101

    PubMed Central  PubMed  Google Scholar 

  135. Tønnesen J, Katona G, Rózsa B, Nägerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685

    Google Scholar 

  136. Tønnesen J, Inavalli VVGK, Nägerl UV (2018) Super-resolution imaging of the extracellular space in living brain tissue. Cell 172:1108-1121.e15

    Google Scholar 

  137. Trotter JH, Hao J, Maxeiner S et al (2019) Synaptic neurexin-1 assembles into dynamically regulated active zone nano-clusters. J Cell Biol 218:2677–2698

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Truckenbrodt S, Maidorn M, Crzan D et al (2018) X10 expansion microscopy enables 25-nm resolution on conventional microscopes. EMBO Rep. https://doi.org/10.15252/embr.201845836

    Article  PubMed Central  PubMed  Google Scholar 

  139. Turcotte R, Liang Y, Tanimoto M et al (2019) Dynamic super-resolution structured illumination imaging in the living brain. Proc Natl Acad Sci USA 116:9586–9591

    CAS  PubMed  Google Scholar 

  140. Urban NT, Willig KI, Hell SW, Nägerl UV (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101:1277–1284

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Vicidomini G, Bianchini P, Diaspro A (2018) STED super-resolved microscopy. Nat Methods 15:173–182

    CAS  PubMed  Google Scholar 

  142. Weeks ACW, Ivanco TL, Leboutillier JC et al (1999) Sequential changes in the synaptic structural profile following long-term potentiation in the rat dentate gyrus: I. Intermed Maint Phase Synap 31:97–107

    CAS  Google Scholar 

  143. Wegner W, Ilgen P, Gregor C et al (2017) In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins. Sci Rep 7:1–10

    CAS  Google Scholar 

  144. Wegner W, Mott AC, Grant SGN et al (2018) In vivo STED microscopy visualizes PSD95 sub-structures and morphological changes over several hours in the mouse visual cortex. Sci Rep 8:219

    PubMed Central  PubMed  Google Scholar 

  145. Wilhelm BG, Mandad S, Truckenbrodt S et al (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344:1023–1028

    CAS  PubMed  Google Scholar 

  146. Willig KI, Steffens H, Gregor C et al (2014) Nanoscopy of filamentous actin in cortical dendrites of a living mouse. Biophys J 106:L01–L03

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Wu Y, Shroff H (2018) Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat Methods 15:1011–1019

    CAS  PubMed  Google Scholar 

  148. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456

    CAS  PubMed  Google Scholar 

  149. York AG, Parekh SH, Dalle Nogare D et al (2012) Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9:749–754

    CAS  PubMed Central  PubMed  Google Scholar 

  150. York AG, Chandris P, Nogare DD et al (2013) Instant super-resolution imaging in live cells and embryos via analog image processing. Nat Methods 10:1122–1130

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Yuste R (2013) Electrical compartmentalization in dendritic spines. Annu Rev Neurosci 36:429–449

    CAS  PubMed  Google Scholar 

  152. Zaccard CR, Shapiro L, Martin-de-Saavedra MD et al (2020) Rapid 3D enhanced resolution microscopy reveals diversity in dendritic spinule dynamics, regulation, and function. Neuron 107:522–537

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kazuki Obashi (National Institutes of Health, Bethesda, USA) for his valuable comments. This work was supported by JSPS KAKENHI (20K15892 to Y. K.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yutaro Kashiwagi.

Ethics declarations

Conflict of interest

The authors declare no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kashiwagi, Y., Okabe, S. Imaging of spine synapses using super-resolution microscopy. Anat Sci Int 96, 343–358 (2021). https://doi.org/10.1007/s12565-021-00603-0

Download citation

Keywords

  • Super-resolution microscopy
  • Nanostructure
  • Dendritic spine
  • Synapse
  • Synaptic plasticity