Skip to main content
Log in

Anatomy of the coronary artery and cardiac vein in the quail ventricle: patterns are distinct from those in mouse and human hearts

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Coronary vessel development has been investigated in avian and mouse embryonic hearts. Quail embryos are a useful tool to examine vascular development, particularly because the QH1 antibody and transgenic quail line, Tg (tie1:H2B-eYFP), are useful to trace endothelial cells. However, there are only a few descriptions of the quail coronary vessels. Using ink injection coronary angiography, we examined the course of coronary vessels in the fetal quail heart. The major coronary arteries were the right and left septal arteries, which, respectively, branched off from the right and left coronary stems. The right septal artery ran posteriorly (dorsally) and penetrated the ventricular free wall to distribute to the posterior surface of the ventricles. The left septal artery ran anteriorly (ventrally) and penetrated the ventricular free wall to distribute to the anterior surface of the ventricles. The right and left circumflex arteries were directed posteriorly along the atrioventricular sulci. The cardiac veins consisted of three major tributaries: the middle, great, and anterior cardiac veins. The middle cardiac vein ascended along the posterior interventricular sulcus and emptied into the right atrium. The great cardiac vein ran along the anterior interventricular sulcus, entered the space between the left atrium and conus arteriosus and emptied into the right atrium behind the aortic bulb. The anterior cardiac vein drained the anterior surface of the right ventricle and connected to the anterior base of the right atrium. The course of coronary vessels in the quail heart was basically the same as that observed in chick but was different from those of mouse and human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e
Fig. 2a–c
Fig. 3a,b

Similar content being viewed by others

References

  • Ainsworth SJ, Stanley RL, Evans DJ (2010) Developmental stages of the Japanese quail. J Anat 216:3–15

    Article  PubMed  Google Scholar 

  • Alejandro Gomez F, Ballesteros LE, Stella Cortes L (2015) Morphological description of great cardiac vein in pigs compared to human hearts. Braz J Cardiovasc Surg 30:63–69

    Google Scholar 

  • Ando K, Nakajima Y, Yamagishi T, Yamamoto S, Nakamura H (2004) Development of proximal coronary arteries in quail embryonic heart: multiple capillaries penetrating the aortic sinus fuse to form main coronary trunk. Circ Res 94:346–352

    Article  PubMed  CAS  Google Scholar 

  • Bezuidenhout AJ (1984) The coronary circulation of the heart of the ostrich (Struthio camelus). J Anat 138:385–397

    PubMed  PubMed Central  Google Scholar 

  • Ciszek B, Skubiszewska D, Ratajska A (2007) The anatomy of the cardiac veins in mice. J Anat 211:53–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowd DA (1969) The coronary vessels and conducting system in the heart of monotremes. Acta Anat (Basel) 74:547–573

    Article  CAS  Google Scholar 

  • Dowd DA (1974) The coronary vessels in the heart of a marsupial, Trichosurus vulpecula. Am J Anat 140:47–56

    Article  PubMed  CAS  Google Scholar 

  • Fernandez B, Duran AC, Fernandez MC, Fernandez-Gallego T, Icardo JM, Sans-Coma V (2008) The coronary arteries of the C57BL/6 mouse strains: implications for comparison with mutant models. J Anat 212:12–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fitzgerald TC (1969) The Coturnix quail anatomy and histology. The Iowa State University Press, Ames, IA

    Google Scholar 

  • Halpern MH (1957) The dual blood supply of the rat heart. Am J Anat 101:1–16

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryos. J Morphol 88:49–92

    Article  PubMed  CAS  Google Scholar 

  • Kamimura T, Yamagishi T, Nakajima Y (2018) Avian coronary endothelium is a mosaic of sinus venosus- and ventricle-derived endothelial cells in a region-specific manner. Dev Growth Differ 60:97–111

    Article  PubMed  CAS  Google Scholar 

  • Kawashima T, Sato K, Sato F, Sasaki H (2003) An anatomical study of the human cardiac veins with special reference to the drainage of the great cardiac vein. Ann Anat 185:535–542

    Article  PubMed  Google Scholar 

  • Kresakova L, Purzyc H, Schusterova I, Fulton B, Maloveska M, Vdoviakova K, Kravcova Z, Boldizar M (2015) Variability in the cardiac venous system of Wistar rats. J Am Assoc Lab Anim Sci 54:10–16

    PubMed  PubMed Central  Google Scholar 

  • Lindsay FE (1967) The cardiac veins of Gallus domesticus. J Anat 101:555–568

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lindsay FE, Smith HJ (1965) Coronary arteries of Gallus domesticus. Am J Anat 116:301–314

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia A, Soto-Navarrete MT, Fernandez MC, Moncayo-Arlandi J, Duran AC, Lopez-Unzu MA, Alonso-Briales JH, Fernandez B (2016) Unusual anatomical origins of the coronary arteries in C57BL/6 mice. Are they strain-specific? J Anat 229:703–709

    Article  PubMed  Google Scholar 

  • Loukas M, Groat C, Khangura R, Owens DG, Anderson RH (2009a) The normal and abnormal anatomy of the coronary arteries. Clin Anat 22:114–128

    Article  PubMed  Google Scholar 

  • Loukas M, Bilinsky S, Bilinsky E, El-Sedfy A, Anderson RH (2009b) Cardiac veins: a review of the literature. Clin Anat 22:129–145

    Article  PubMed  Google Scholar 

  • Myczkowski K (1960) Morphology of the coronary arteries in fowl and in some wild birds. Folia Morphol 11:21–30

    Google Scholar 

  • Nakajima Y, Imanaka-Yoshida K (2013) New insights into the developmental mechanisms of coronary vessels and epicardium. Int Rev Cell Mol Biol 303:263–317

    Article  PubMed  CAS  Google Scholar 

  • Pardanaud L, Altmann C, Kitos P, Dieterlen-Lievre F, Buck CA (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349

    PubMed  CAS  Google Scholar 

  • Perez-Pomares JM, de la Pompa JL, Franco D, Henderson D, Ho SY, Houyel L, Kelly RG, Sedmera D, Sheppard M, Sperling S, Thiene G, van den Hoff M, Basso C (2016) Congenital coronary artery anomalies: a bridge from embryology to anatomy and pathophysiology—a position statement of the development, anatomy, and pathology ESC Working Group. Cardiovasc Res 109:204–216

    Article  PubMed  CAS  Google Scholar 

  • Reese DE, Mikawa T, Bader DM (2002) Development of the coronary vessel system. Circ Res 91:761–768

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Lansford R (2013) Transgenesis and imaging in birds, and available transgenic reporter lines. Dev Growth Differ 55:406–421

    Article  PubMed  CAS  Google Scholar 

  • Sedmera D, Watanabe M (2006) Growing the coronary tree: the quail saga. Anat Rec A Discov Mol Cell Evol Biol 288:933–935

    Article  PubMed  Google Scholar 

  • Tian X, Pu WT, Zhou B (2015) Cellular origin and developmental program of coronary angiogenesis. Circ Res 116:515–530

    Article  PubMed  CAS  Google Scholar 

  • Tomanek RJ, Hansen HK, Dedkov EI (2006) Vascular patterning of the quail coronary system during development. Anat Rec A Discov Mol Cell Evol Biol 288:989–999

    Article  PubMed  Google Scholar 

  • von Lüdinghausen M (1987) Clinical anatomy of cardiac veins, Vv. cardiacae. Surg Radiol Anat 9:159–168

    Article  Google Scholar 

  • Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Hungerford JE, Little CD, Poelmann RE (1997) The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev Dyn 208:338–348

    Article  PubMed  CAS  Google Scholar 

  • Yoldas A, Ozmen E, Ozdemir V (2010) Macroscopic description of the coronary arteries in Swiss albino mice (Mus musculus). J S Afr Vet Assoc 81:247–252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Uoya for preparing the manuscript. This work was supported by JSPS Grant-in-Aid Scientific Research ©) 16K08450.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Nakajima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, M., Narematsu, M. & Nakajima, Y. Anatomy of the coronary artery and cardiac vein in the quail ventricle: patterns are distinct from those in mouse and human hearts. Anat Sci Int 93, 533–539 (2018). https://doi.org/10.1007/s12565-018-0446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-018-0446-x

Keywords

Navigation