Skip to main content

Advertisement

Log in

Renin-angiotensin system in vertebrates: phylogenetic view of structure and function

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Renin substrate, biological renin activity, and/or renin-secreting cells in kidneys evolved at an early stage of vertebrate phylogeny. Angiotensin (Ang) I and II molecules have been identified biochemically in representative species of all vertebrate classes, although variation occurs in amino acids at positions 1, 5, and 9 of Ang I. Variations have also evolved in amino acid positions 3 and 4 in some cartilaginous fish. Angiotensin receptors, AT1 and AT2 homologues, have been identified molecularly or characterized pharmacologically in nonmammalian vertebrates. Also, various forms of angiotensins that bypass the traditional renin-angiotensin system (RAS) cascades or those from large peptide substrates, particularly in tissues, are present. Nonetheless, the phylogenetically important functions of RAS are to maintain blood pressure/blood volume homeostasis and ion-fluid balance via the kidney and central mechanisms. Stimulation of cell growth and vascularization, possibly via paracrine action of angiotensins, and the molecular biology of RAS and its receptors have been intensive research foci. This review provides an overview of: (1) the phylogenetic appearance, structure, and biochemistry of the RAS cascade; (2) the properties of angiotensin receptors from comparative viewpoints; and (3) the functions and regulation of the RAS in nonmammalian vertebrates. Discussions focus on the most fundamental functions of the RAS that have been conserved throughout phylogenetic advancement, as well as on their physiological implications and significance. Examining the biological history of RAS will help us analyze the complex RAS systems of mammals. Furthermore, suitable models for answering specific questions are often found in more primitive animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

ACTH:

Adrenocorticotropic hormone

Ang:

Angiotensin

AT1 :

Ang receptor subtype 1

AT2 :

Ang receptor subtype 2

BP:

Blood pressure

cAT:

Chicken AT1-homologous receptor

CGP:

Ciba-Geigy Peptide (modified peptide angiotensin receptor antagonist)

E:

Embryonic day (specified as E14, E19, etc.)

FW:

Fresh water

GFR:

Glomerular filtration rate

HR:

Heart rate

i.p.:

Intraperitoneal

ICV:

Intracerebroventricular

IP3 :

Inositol triphosphate

JG:

Juxtaglomerular

L-NAME:

Nω-nitro-l-arginine methyl ester

PG:

Prostaglandin

PRA:

Plasma renin activity

RAS:

Renin-angiotensin system

RT-PCR:

Reverse transcriptase-polymerase chain reaction

SM:

Smooth muscle

SW:

Seawater

tAT:

Turkey AT1-homologous receptor

TGF:

Tubuloglomerular feedback

VSM:

Vascular smooth muscle

References

  • Aiyar N, Baker E, Pullen M, Nuthulaganti P, Bergsma DJ, Kumar C, Nambi P (1994) Characterization of a functional angiotensin II receptor in Xenopus laevis heart. Pharmacology 48:242–249

    Article  CAS  PubMed  Google Scholar 

  • Anderson WG, Takei Y, Hazon N (2001) The dipsogenic effect of the renin-angiotensin system in elasmobranch fish. Gen Comp Endocrinol 124:300–307

    Article  CAS  PubMed  Google Scholar 

  • Ardaillou R (1999) Angiotensin II receptors. J Am Soc Nephrol 10(Suppl 11):S30–S39

    CAS  PubMed  Google Scholar 

  • Armour KJ, O’Toole LB, Hazon N (1993) Mechanisms of ACTH- and angiotensin II-stimulated 1 alpha-hydroxycorticosterone secretion in the dogfish, Scyliorhinus canicula. J Mol Endocrinol 10:235–244

    Article  CAS  PubMed  Google Scholar 

  • Arnold-Reed DE, Balment RJ (1994) Peptide hormones influence in vitro interrenal secretion of cortisol in the trout, Oncorhynchus mykiss. Gen Comp Endocrinol 96:85–91

    Article  CAS  PubMed  Google Scholar 

  • Bailey JR, Nishimura H (1984) Renal response of fowl to hypertonic saline infusion into the renal portal system. Am J Physiol Regul Integr Comp Physiol 246:R624–R632

    CAS  Google Scholar 

  • Bailey JR, Randall DJ (1981) Renal perfusion pressure and renin secretion in the rainbow trout, Salmo gairdneri. Can J Zool 59:1220–1226

    Article  CAS  Google Scholar 

  • Balment RJ, Carrick S (1985) Endogenous renin-angiotensin system and drinking behavior in flounder. Am J Physiol Regul Integr Comp Physiol 248:R157–R160

    CAS  Google Scholar 

  • Balment RJ, Warne JM, Takei Y (2003) Isolation, synthesis and biological activity of flounder [Asn1, Ile5, Thr9] angiotensin I. Gen Comp Endocrinol 130:92–98

    Article  CAS  PubMed  Google Scholar 

  • Barajas L (1964) The innervation of the juxtaglomerular apparatus. An electron microscopic study of the innervation of the glomerular arterioles. Lab Invest 13:916–929

    CAS  PubMed  Google Scholar 

  • Barajas L (1979) Anatomy of the juxtaglomerular apparatus. Am J Physiol Renal Physiol 237:F333–F343

    CAS  Google Scholar 

  • Barajas L, Latta H (1967) Structure of the juxtaglomerular apparatus. Circ Res 21(Suppl 2):15–28

    Google Scholar 

  • Battista MC, Oligny LL, St-Louis J, Brochu M (2002) Intrauterine growth restriction in rats is associated with hypertension and renal dysfunction in adulthood. Am J Physiol Endocrinol Metab 283:E124–E131

    Article  CAS  PubMed  Google Scholar 

  • Bennett T, Malmfors T (1970) The adrenergic nervous system of the domestic fowl (Gallus domesticus (L.)). Z Zellforsch 106:22–50

    Article  CAS  PubMed  Google Scholar 

  • Bergsma DJ, Ellis C, Nuthulaganti PR et al (1993) Isolation and expression of a novel angiotensin II receptor from Xenopus laevis heart. Mol Pharmacol 44:277–284

    CAS  PubMed  Google Scholar 

  • Bernier NJ, Perry SF (1997) Angiotensins stimulate catecholamine release from the chromaffin tissue of the rainbow trout. Am J Physiol Regul Integr Comp Physiol 273:R49–R57

    CAS  Google Scholar 

  • Bernier NJ, Perry SF (1999) Cardiovascular effects of angiotensin-II-mediated adrenaline release in rainbow trout Oncorhynchus mykiss. J Exp Biol 202:55–66

    CAS  PubMed  Google Scholar 

  • Bernier NJ, Gilmour KM, Takei Y, Perry SF (1999a) Cardiovascular control via angiotensin II and circulating catecholamines in the spiny dogfish, Squalus acanthias. J Comp Physiol B 169:237–248

    Article  CAS  PubMed  Google Scholar 

  • Bernier NJ, McKendry JE, Perry SF (1999b) Blood pressure regulation during hypotension in two teleost species: differential involvement of the renin-angiotensin and adrenergic systems. J Exp Biol 202:1677–1690

    CAS  PubMed  Google Scholar 

  • Best JB, Blair-West JR, Coghlan JP, Cran EJ, Fernley RT, Simpson PA (1974) A novel sequence in kangaroo angiotensin I. Clin Exp Pharm Physiol 1:171–174

    Article  CAS  Google Scholar 

  • Blair-West JR, Coghlan JP, Denton DA et al (1977) Plasma renin activity and blood corticosteroids in the Australian lungfish, Neoceratodus forsteri. J Endocrinol 74:137–142

    Article  CAS  PubMed  Google Scholar 

  • Brede M, Hein L (2004) Knockout models of the renin-angiotensin system. In: Unger T, Scholkens BA (eds) Angiotensin. Handbook of experimental pharmacology, vol 163, part 1. Springer, Berlin, pp 205–227

  • Briggs JP, Schnermann J (1995) The tubuloglomerular feedback mechanism. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management, 2nd edn. Raven, New York, pp 1359–1383

    Google Scholar 

  • Brown JA, Oliver JA, Henderson IW, Jackson BA (1980) Angiotensin and single nephron glomerular function in the trout Salmo gairdneri. Am J Physiol Regul Integr Comp Physiol 239:R509–R514

    CAS  Google Scholar 

  • Brown SR, Stephens GA, Todt MJ (1983) Systemic and renal effects of angiotensin II in the freshwater turtle Pseudemys scripta elegans. Am J Physiol Regul Integr Comp Physiol 245:R837–R842

    CAS  Google Scholar 

  • Brown JA, Gray CJ, Taylor SM (1990) Direct effects of angiotensin II on glomerular ultrastructure in the rainbow trout, Salmo gairdneri. Cell Tissue Res 260:315–319

    Article  CAS  Google Scholar 

  • Brown JA, Rankin JC, Yokota SD (1993) Glomerular haemodynamics and filtration in single nephrons of nonmammalian vertebrates. In: Brown JA, Balment RJ, Rankin JC (eds) New insights in vertebrate kidney function. Society for Experimental Biology. Cambridge University Press, New York, pp 1–44

    Google Scholar 

  • Brown JA, Pope SK, Amer S et al (1997) Angiotensin receptors in teleost fish glomeruli. In: Kawashima S, Kikuyama S (eds) Advances in comparative endocrinology. Proceedings of the XIIIth international congress of comparative endocrinology. Monduzzi Editore, Bologna, Italy, pp 1313–1319

  • Brown JA, Paley RK, Amer S, Aves SJ (2000) Evidence for an intrarenal renin-angiotensin system in the rainbow trout, Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 278:R1685–R1691

    CAS  PubMed  Google Scholar 

  • Burnstock G (1969) Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev 21:247–324

    CAS  PubMed  Google Scholar 

  • Butler DG, Brown JA (2007) Stanniectomy attenuates the renin-angiotensin response to hypovolemic hypotension in freshwater eels (Anguilla rostrata) but not blood pressure recovery. J Comp Physiol B 177:143–151

    Article  CAS  PubMed  Google Scholar 

  • Callard IP, Callard GV (1978) The adrenal gland in reptilia. II. Physiology. In: Chester-Jones I, Henderson IW (eds) General comparative and clinical endocrinology of the adrenal cortex, vol 2. Academic Press, New York, pp 370–418

    Google Scholar 

  • Carrick S, Balment RJ (1983) The renin-angiotensin system and drinking in the euryhaline flounder, Platichthys flesus. Gen Comp Endocrinol 51:423–433

    Article  CAS  PubMed  Google Scholar 

  • Carroll RG (1981) Vascular response of the dogfish and sculpin to angiotensin II. Am J Physiol Regul Integr Comp Physiol 240:R139–R143

    CAS  Google Scholar 

  • Carroll RG, Opdyke DF (1982) Evolution of angiotensin II-induced catecholamine release. Am J Physiol Regul Integr Comp Physiol 243:R65–R69

    CAS  Google Scholar 

  • Chan MY, Holmes WN (1971) Studies on a “renin-angiotensin” system in the normal and hypophysectomized pigeon (Columba livia). Gen Comp Endocrinol 16:304–311

    Article  CAS  PubMed  Google Scholar 

  • Chester-Jones I, Henderson IW, Chan DKO et al (1966) Pressor activity in extracts of the corpuscles of Stannius from the European eel (Anguilla anguilla L.). J Endocrinol 34:393–408

    Article  Google Scholar 

  • Cobb CS, Brown JA (1992) Angiotensin II binding to tissues of the rainbow trout, Oncorhynchus mykiss, studied by autoradiography. J Comp Physiol B 162:197–202

    Article  CAS  PubMed  Google Scholar 

  • Cobb CS, Brown JA (1993) Characterization of putative glomerular receptors for angiotensin II in the rainbow trout Oncorhynchus mykiss using the antagonists losartan, PD 123177, and saralasin. Gen Comp Endocrinol 92:123–131

    Article  CAS  PubMed  Google Scholar 

  • Cobb CS, Williamson R, Brown JA (1999) Angiotensin II-induced calcium signalling in isolated glomeruli from fish kidney (Oncorhynchus mykiss) and effects of losartan. Gen Comp Endocrinol 113:312–321

    Article  CAS  PubMed  Google Scholar 

  • Cobb CS, Frankling SC, Rankin JC, Brown JA (2002) Angiotensin converting enzyme-like activity in tissues from the river lamprey or lampern, Lampetra fluviatilis, acclimated to freshwater and seawater. Gen Comp Endocrinol 127:8–15

    Article  CAS  PubMed  Google Scholar 

  • Cobb CS, Brown JA, Rankin JC (2010) Antidiuretic action of angiotensin II in the river lamprey Lampetra fluviatilis: evidence for endocrine control of kidney function in cyclostomes. J Fish Biol 77:1424–1431

    Article  CAS  PubMed  Google Scholar 

  • Conklin DJ, Olson KR (1994) Angiotensin II relaxation of rainbow trout vessels in vitro. Am J Physiol Regul Integr Comp Physiol 255:R1856–R1860

    Google Scholar 

  • Conlon JM, Yano K, Olson KR (1996) Production of [Asn1, Val5]angiotensin II and [Asp1, Val5]angiotensin II in kallikrein-treated trout plasma (T60 K). Peptides 17:527–530

    Article  CAS  PubMed  Google Scholar 

  • Corwin E, Malvin GM, Katz S, Malvin RL (1984) Temperature sensitivity of the renin-angiotensin system in Ambystoma tigrinum. Am J Physiol Regul Integr Comp Physiol 246:R510–R515

    CAS  Google Scholar 

  • Coviello A, Biondi AC, Perseguino JC (1981) Sodium transport in vitro: the effects of angiotensin II. In: Villarreal H (ed) Hypertension. Wiley, New York, pp 69–78

    Google Scholar 

  • Crabbé J (1961) Stimulation of active sodium transport across the isolated toad bladder after injection of aldosterone to the animal. Endocrinology 69:673–682

    Article  PubMed  Google Scholar 

  • Danser AHJ (1996) Local renin-angiotensin systems. Mol Cell Biochem 157:211–216

    Article  CAS  PubMed  Google Scholar 

  • Danser AHJ (2003) Local renin-angiotensin systems: the unanswered questions. Int J Biochem Cell Biol 35:759–768

    Article  CAS  PubMed  Google Scholar 

  • Davis JO (1974) The renin-angiotensin system in the control of aldosterone secretion. In: Page IH, Bumpus FM (eds) angiotensin. Springer-Verlag, New York, pp 322–336

    Chapter  Google Scholar 

  • Davis JO, Freeman RH (1976) Mechanisms regulating renin release. Physiol Rev 56:1–56

    CAS  PubMed  Google Scholar 

  • Dinh DT, Frauman AG, Johnston CI, Fabiani ME (2001) Angiotensin receptors: distribution, signalling and function. Clin Sci 100:481–492

    Article  CAS  PubMed  Google Scholar 

  • Dzau VJ (1993) Local expression and pathophysiological role of renin-angiotensin in the blood vessels and heart. In: Heusch F, Essen G (eds) Basic Res Cardiol 88(Suppl 1):1–14

  • Eddy FB (2007) Drinking in juvenile Atlantic salmon (Salmo salar L.) in response to feeding and activation of the endogenous renin–angiotensin system. Comp Biochem Physiol Part A 148:23–28

    Article  CAS  Google Scholar 

  • Edwards JG (1940) The vascular pole of the glomerulus in the kidney of vertebrates. Anat Rec 76:381–389

    Article  Google Scholar 

  • Erspamer V, Melchiorri P, Nakajima T, Yasuhara T, Endean R (1979) Amino acid composition and sequence of Crinia-angiotensin, an angiotensin II-like endecapeptide from the skin of the Australian frog Crinia georgiana. Experientia 35:1132–1133

    Article  CAS  PubMed  Google Scholar 

  • Evered MD, Fitzsimons JT (1981) Drinking and changes in blood pressure in response to precursors, fragments and analogues of angiotensin II in the pigeon Columba livia. J Physiol (Lond) 310:353–366

    Article  CAS  Google Scholar 

  • Ferrao FM, Lara LS, Lowe J (2014) Renin-angiotensin system in the kidney: what is new? World J Nephrol 3(3):64–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrario CM, Barnes KL, Block CH et al (1990) Pathways of angiotensin formation and function in the brain. Hypertension 15(Suppl I):I-13–I-19

    Article  CAS  Google Scholar 

  • Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI (1997) Counterregulatory actions of angiotensin-(1–7). Hypertension 30:535–541

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    CAS  PubMed  Google Scholar 

  • Fitzsimons JT, Massi M, Thornton SN (1982) The effects of changes in osmolality and sodium concentration on angiotensin-induced drinking and excretion in the pigeon. J Physiol (Lond) 330:1–15

    Article  CAS  Google Scholar 

  • Forrest JN, MacKay WC, Gallagher B, Epstein FH (1973) Plasma cortisol response to saltwater adaptation in the American eel Anguilla rostrata. Am J Physiol 224:714–717

    CAS  PubMed  Google Scholar 

  • Fournier D, Luft FC, Bader M, Ganten D, Andrade-Navarro MA (2012) Emergence and evolution of the renin-angiotensin-aldosterone system. J Mol Med 90:495–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser R, Lantos CP (1978) 18-Hydroxycorticosterone: a review. J Steroid Biochem 9:273–286

    Article  CAS  PubMed  Google Scholar 

  • Fuchs S, Germain S, PhilIppe J, Corvol P, Pinet F (2002) Expression of renin in large arteries outside the kidney revealed by human renin promoter/LacZ transgenic mouse. Am J Pathol 161:717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes J, Eddy FB (1996) Drinking in freshwater-adapted rainbow trout fry, Oncorhynchus mykiss (Walbaum), in response to angiotensin I, angiotensin II, angiotensin-converting enzyme inhibition, and receptor blockade. Physiol Zool 69:1555–1569

    Article  CAS  Google Scholar 

  • Fuentes J, Eddy FB (1998) Cardiovascular responses in vivo to angiotensin II and the peptide antagonist saralasin in rainbow trout Oncorhynchus mykiss. J Exp Biol 201:267–272

    CAS  PubMed  Google Scholar 

  • Galli SM (1985) Angiotensin and catecholamines effect on electrolyte transport in amphibian. PhD Thesis, University of New York, New York

  • Galli-Gallardo SM, Pang PKT (1978) Renal and vascular actions of angiotensins in amphibian. Physiologist 21:41

    Google Scholar 

  • Gamundi SS (1983) Vascular responses to angiotensins in the toad. Role of the adrenergic system. Pharmacol Res Commun 15:529–543

    Article  CAS  PubMed  Google Scholar 

  • Garland HO, Henderson IW (1975) Influence of environmental salinity on renal and adrenocortical function in the toad, Bufo marinus. Gen Comp Endocrinol 27:136–143

    Article  CAS  PubMed  Google Scholar 

  • Gomez RA (1998) Role of angiotensin in renal vascular development. Kidney Int 54(Suppl 67):S12–S16

    Article  Google Scholar 

  • Gomez RA, Sequeira-Lopez MLS (2016) Novel function of renin precursors in homeostasis and disease. Physiology 31:25–33

    Article  PubMed  Google Scholar 

  • Gomez RA, Lynch KR, Chevalier RL, Everett AD et al (1988a) Renin and angiotensinogen gene expression and intrarenal renin distribution during ACE inhibition. Am J Physiol Renal Physiol 254:F900–F906

    CAS  Google Scholar 

  • Gomez RA, Lynch KR, Chevalier RL et al (1988b) Renin and angiotensinogen gene expression in maturing rat kidney. Am J Physiol Renal Physiol 254:F582–F587

    CAS  Google Scholar 

  • Gomez RA, Lynch KR, Sturgill BC et al (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol Renal Physiol 257:F850–F858

    CAS  Google Scholar 

  • Gray CJ, Brown JA (1984) Regulation of nephron function of the trout: long-term infusion of angiotensin. Gen Comp Endocrinol 53:441–442

    Google Scholar 

  • Gray CJ, Brown JA (1987) Glomerular ultrastructure of the trout, Salmo gairdneri: effects of angiotensin II and adaptation to seawater. Cell Tissue Res 249:437–442

    Article  CAS  PubMed  Google Scholar 

  • Guyton AC, Hall JE (2006) Chapter 18, Nervous regulation of the circulation, and rapid control of arterial pressure; Chapter 19, Dominant role of the kidney in long-term regulation of blood pressure and in hypertension. In: Textbook of Medical Physiology, Elsevier, Saunders, pp 204–231

  • Harper RA, Stephens GA (1985) Blockade of the pressor response to angiotensins I and II in the bullfrog, Rana catesbeiana. Gen Comp Endocrinol 60:227–235

    Article  CAS  PubMed  Google Scholar 

  • Harris JM, Gomez RA (1997) Renin-angiotensin system genes in kidney development. Microsc Res Tech 39(3):211–221

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa Y, Nakajima T, Sokabe H (1983a) Chemical structure of angiotensin formed with kidney renin in the Japanese eel, Anguilla japonica. Biomed Res 4:417–420

    CAS  Google Scholar 

  • Hasegawa Y, Watanabe TX, Sokabe H, Nakajima T (1983b) Chemical structure of angiotensin in the bullfrog Rana catesbeiana. Gen Comp Endocrinol 50:75–80

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa Y, Cipolle M, Watanabe TX, Nakajima T, Sokabe H, Zehr JF (1984a) Chemical structure of angiotensin in the turtle, Pseudemys scripta. Gen Comp Endocrinol 53:159–162

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa Y, Watanabe TX, Nakajima T, Sokabe H (1984b) Chemical structure of angiotensin formed by incubating plasma with the corpuscles of Stannius in the Japanese goosefish, Lophius litulon. Gen Comp Endocrinol 54:264–269

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Nishimura H, Khosla MC (1993) Angiotensin II-induced endothelium-dependent relaxation of fowl aorta. Am J Physiol Regul Integr Comp Physiol 264:R903–R911

    CAS  Google Scholar 

  • Hayashi T, Nakayama T, Nakajima T, Sokabe H (1978) Comparative studies on angiotensins. V. Structure of angiotensin formed by the kidney of Japanese goosefish and its identification by Dansyl method. Chem Pharm Bull 26:215–219

    Article  CAS  PubMed  Google Scholar 

  • Hazon N, Cerra MC, Tierney ML, Tota B, Takei Y (1997) Elasmobranch renin angiotensin system and the angiotensin receptor. In: Kawashima S, Kikuyama S (eds) Advances in comparative endocrinology. Proceedings of the XIIIth international congress of comparative endocrinology. Monduzzi Editore, Bologna, Italy, pp 1307–1312

  • Hazon N, Tierney ML, Takei Y (1999) Renin-angiotensin system in elasmobranch fish: a review. J Exp Zool 284:526–534

    Article  CAS  PubMed  Google Scholar 

  • Henderson IW (1997) Endocrinology of the vertebrates. In: Dantzler WH (ed) Handbook of physiology of comparative physiology, section 13, vol 1. Oxford University Press, New York, pp 623–749

    Google Scholar 

  • Henderson IW, Jotisankasa V, Mosley W, Oguri M (1976) Endocrine and environmental influences upon plasma cortisol concentrations and plasma renin activity of the eel, Anguilla anguilla L. J Endocrinol 70:81–95

    Article  CAS  PubMed  Google Scholar 

  • Hirano T (1974) Some factors regulating water intake by the eel, Anguilla japonica. J Exp Biol 61:737–747

    CAS  PubMed  Google Scholar 

  • Hirano T, Hasegawa S (1984) Effects of angiotensins and other vasoactive substances on drinking in the eel, Anguilla japonica. Zool Sci 1:106–113

    CAS  Google Scholar 

  • Hirano T, Utida S (1971) Plasma cortisol concentration and the rate of intestinal water absorption in the eel, Anguilla japonica. Endocrinol Jpn 18:47–52

    Article  CAS  Google Scholar 

  • Hirano T, Takei Y, Kobayashi H (1978) Angiotensin and drinking in the eel and the frog. Alfred Benzon Symp 11:123–134

    CAS  Google Scholar 

  • Hoff KVS, Hillyard SD (1991) Angiotensin II stimulates cutaneous drinking in the toad Bufo punctatus. Physiol Zool 64:1165–1172

    Article  Google Scholar 

  • Holmes WN, Cronshaw J (1980) Adrenal cortex: structure and function. In: Epple A, Stetson MH (eds) Avian endocrinology. Academic, New York, pp 271–299

    Google Scholar 

  • Holmes WN, Cronshaw J, Rohde KE (1991) The steroidogenic responsiveness in vitro of adrenal gland tissue from the neonatal mallard duck (Anas platyrhynchos). Gen Comp Endocrinol 82:217

    Google Scholar 

  • Imbrogno S (2013) The eel heart: multilevel insights into functional organ plasticity. J Exp Biol 216:3575–3586

    Article  CAS  PubMed  Google Scholar 

  • Imbrogno S, Garofalo F, Amelio D, Capria C, Cerra MC (2013) Humoral control of cardiac remodeling in fish: role of angiotensin II. Gen Comp Endocrinol 194:189–197

    Article  CAS  PubMed  Google Scholar 

  • Inagami T, Kitami Y (1994) Angiotensin II receptor: molecular cloning, functions, and regulation. In: Saavedra JM, Timmermans PBMWM (eds) Angiotensin receptors. Plenum, New York, pp 1–15

  • Ji H, Sandberg K, Zhang Y, Catt KJ (1993) Molecular cloning, sequencing and functional expression of an amphibian angiotensin II receptor. Biochem Biophys Res Commun 194:756–762

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Leung M, Zhang Y, Catt KJ, Sandberg K (1994) Differential structural requirements for specific binding of nonpeptide and peptide antagonists to the AT1 angiotensin receptor. J Biol Chem 269:16533–16536

    CAS  PubMed  Google Scholar 

  • Ji H, Zheng W, Zhang Y, Catt KJ, Sandberg K (1995) Genetic transfer of a nonpeptide antagonist binding site to a previously unresponsive angiotensin receptor. Proc Natl Acad Sci USA 92:9240–9244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson WE, Hillyard SD, Propper CR (2010) Plasma and brain angiotensin concentrations associated with water response behavior in the desert anuran, Scaphiopus couchii, under natural conditions in the field. Comp Biochem Physiol Part A 157:377–381

    Article  CAS  Google Scholar 

  • Johnston CI, Davis JO, Wright FS, Howards SS (1967) Effects of renin and ACTH on adrenal steroid secretion in the American bullfrog. Am J Physiol 213:393–399

    CAS  PubMed  Google Scholar 

  • Jones CA, Sigmund CD, McGowan RA, Kane-Haas CM, Gross KW (1990) Expression of murine renin genes during fetal development. Mol Endocrinol 4:375–383

    Article  CAS  PubMed  Google Scholar 

  • Jones CA, Hurley MI, Black TA et al (2000) Expression of a renin/GFP transgene in mouse embryonic, extra-embryonic, and adult tissues. Physiol Genom 4:75–81

    CAS  Google Scholar 

  • Joss JMP, Itahara Y, Watanabe TX, Nakajima K, Takei Y (1999) Teleost-type angiotensin is present in Australian lungfish, Neoceratodus forsteri. Gen Comp Endocrinol 114:206–212

    Article  CAS  PubMed  Google Scholar 

  • Kaufman S, Peters G (1980) Regulatory drinking in the pigeon Columba livia. Am J Physiol Regul Integr Comp Physiol 239:R219–R225

    CAS  Google Scholar 

  • Keeton TK, Campbell WB (1980) The pharmacologic alteration of renin release. Pharmacol Rev 32:81–227

    CAS  PubMed  Google Scholar 

  • Kempf H, Le Moullec JM, Corvol P, Gasc JM (1996) Molecular cloning, expression and tissue distribution of a chicken angiotensin II receptor. FEBS Lett 399:198–202

    Article  CAS  PubMed  Google Scholar 

  • Kempf H, Corvol P, Gasc JM (1999) Expression of the chicken angiotensin II receptor: atypical pattern compared to its mammalian homologues. Mech Dev 84:177–180

    Article  CAS  PubMed  Google Scholar 

  • Kenyon CJ, McKeever A, Oliver JA, Henderson IW (1985) Control of renal and adrenocortical function by the renin-angiotensin system in two euryhaline teleost fishes. Gen Comp Endocrinol 58:93–100

    Article  CAS  PubMed  Google Scholar 

  • Khosla MC, Smeby RR, Bumpus FM (1974) Structure-activity relationship in angiotensin II analogs. In: Page IH, Bumpus FM (eds) angiotensin, vol 37., Handbuch der experimentellen pharmakologie (Handbook of experimental pharmacology). Springer, New York, pp 126–161

    Chapter  Google Scholar 

  • Khosla MC, Bumpus FM, Nishimura H, Opdyke DF, Coviello A (1983) Synthesis of nonmammalian angiotensins and their comparative pressor properties in dogfish shark, domestic chicken, and rat. Hypertension 5(Suppl 5):V22–V28

    Article  CAS  PubMed  Google Scholar 

  • Khosla MC, Nishimura H, Hasegawa Y, Bumpus FM (1985) Identification and synthesis of [I-asparagine, 5-valine, 9-glycine]-angiotensin I produced from plasma of American eel, Anguilla rostrata. Gen Comp Endocrinol 57:223–233

    Article  CAS  PubMed  Google Scholar 

  • Klingbeil CK (1985) Corticosterone and aldosterone dose-dependent responses to ACTH and angiotensin II in the duck (Anas platyrhynchos). Gen Comp Endocrinol 59:382–390

    Article  CAS  PubMed  Google Scholar 

  • Klingbeil CK, Holmes WN, Pearce RB, Cronshaw J (1979) Functional significance of interrenal cell zonation in the adrenal gland of the duck (Anas platyrhynchos). Cell Tissue Res 201:23–36

    Article  CAS  PubMed  Google Scholar 

  • Kloas W, Hanke W (1992) Localization and quantification of angiotensin II (A II) binding sites in the kidney of Xenopus laevis—lack of A II receptors in the adrenal tissue. Gen Comp Endocrinol 86:173–183

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Takei Y (1982) Mechanisms for induction of drinking with special reference to angiotensin II. Comp Biochem Physiol A 71A:485–494

    CAS  Google Scholar 

  • Kobayashi H, Takei Y (1996) The renin-angiotensin system, comparative aspects. Zoophysiology 35, Springer, Berlin, pp 1–245

  • Kobayashi H, Uemura H, Wada M, Takei Y (1979) Ecological adaptation of angiotensin-induced thirst mechanism in tetrapods. Gen Comp Endocrinol 38:93–104

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Uemura H, Takei Y (1980) Physiological role of the renin-angiotensin system during dehydration. In: Epple A, Stetson MH (eds) Avian endocrinology. Academic, New York, pp 319–330

    Google Scholar 

  • Kobayashi H, Uemura H, Takei Y, Itatsu N, Ozawa M, Ichinohe K (1983) Drinking induced by angiotensin II in fishes. Gen Comp Endocrinol 49:295–306

    Article  CAS  PubMed  Google Scholar 

  • Kon Y (1999) Comparative study of renin-containing cells. Histological approaches. J Vet Med Sci 61:1075–1086

    Article  CAS  PubMed  Google Scholar 

  • Kon Y, Hashimoto Y, Kitagawa H, Kudo N (1987) Morphological and Immunohistochemical studies of juxtaglomerular cells in the carp, Cyprinus carpio. Jpn J Vet Sci 49:323–331

    Article  CAS  Google Scholar 

  • Krishnamurthy VG, Bern HA (1969) Correlative histologic study of the corpuscles of Stannius and the juxtaglomerular cells of teleost fishes. Gen Comp Endocrinol 13:313–335

    Article  CAS  PubMed  Google Scholar 

  • Kumai Y, Bernier NJ, Perry SF (2014) Angiotensin-II promotes Na uptake in larval zebrafish, Danio rerio, in acidic and ion-poor water. J Endocrinol 220:195–205

    Article  CAS  PubMed  Google Scholar 

  • Kurtz A, Wagner C (1999) Cellular control of renin secretion. J Exp Biol 202:219–225

    CAS  PubMed  Google Scholar 

  • Lacy ER, Reale E (1990) The presence of a juxtaglomerular apparatus in elasmobranch fish. Anat Embryol 182:249–262

    Article  CAS  PubMed  Google Scholar 

  • Lancien F, Le Mevel JC (2007) Central actions of angiotensin II on spontaneous baroreflex sensitivity in the trout Oncorhynchus mykiss. Regul Pept 138:94–102

    Article  CAS  PubMed  Google Scholar 

  • Lancien F, Wong M, Arab AA, Mimassi N, Takei Y, Le Mevel JC (2012) Central ventilatory and cardiovascular actions of angiotensin peptides in trout. Am J Physiol Regul Integr Comp Physiol 303:R311–R320

    Article  CAS  PubMed  Google Scholar 

  • Le Mevel JC, Pamantung T-F, Mabin D, Vaudry H (1994) Intracerebroventricular administration of angiotensin II increases heart rate in the conscious trout. Brain Res 654:216–222

    Article  PubMed  Google Scholar 

  • Le Mevel JC, Lancien F, Mimassi N (2008) Central cardiovascular actions of angiotensin II in trout. Gen Comp Endocrinol 157:27–34

    Article  PubMed  CAS  Google Scholar 

  • Le Noble FAC, Schreurs NHJS, Van Straaten HWM et al (1993) Evidence for a novel angiotensin II receptor involved in angiogenesis in chick embryo chorioallantoic membrane. Am J Physiol Regul Integr Comp Physiol 264:R460–R465

    Google Scholar 

  • Le Noble F, Smits J, Struijker-Boudier H (1997) Hypertension, the renin-angiotensin system and vascular development. In: Kawashima S, Kikuyama S (eds) Advances in comparative endocrinology. Proceedings of the XIIIth international congress of comparative endocrinology. Monduzzi Editore, Bologna, Italy, pp 1321–1327

  • Liang P, Jones CA, Bisgrove BW et al (2004) Genomic characterization and expression analysis of the first nonmammalian renin genes from zebrafish and pufferfish. Physiol Genom 16:314–322

    CAS  Google Scholar 

  • Lindpaintner K, Ganten D (1991) The cardiac renin-angiotensin system: an appraisal of present experimental and clinical evidence. Circ Res 68:905–921

    Article  CAS  PubMed  Google Scholar 

  • Lorenz JN, Weihprecht H, Schnermann J, Skott O, Briggs JP (1991) Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol Renal Physiol 260:F486–F493

    CAS  Google Scholar 

  • Lumbers ER (1999) Angiotensin and aldosterone. Regul Pept 80:91–100

    Article  CAS  PubMed  Google Scholar 

  • Maejima S, Konno N, Matsuda K, Uchiyama M (2010) Central angiotensin II stimulates cutaneous water intake behavior via an angiotensin II type-1 receptor pathway in the Japanese tree frog Hyla japonica. Horm Behav 58:457–464

    Article  CAS  PubMed  Google Scholar 

  • Malvin RL, Schiff D, Eiger S (1980) Angiotensin and drinking rates in the euryhaline killifish. Am J Physiol Regul Integr Comp Physiol 239:R31–R34

    CAS  Google Scholar 

  • Marsigliante S, Verri T, Barker S, Jimenez E, Vinson GP, Storelli C (1994) Angiotensin II receptor subtypes in eel (Anguilla anguilla). J Mol Endocrinol 12:61–69

    Article  CAS  PubMed  Google Scholar 

  • Marsigliante S, Acierno R, Maffia M, Muscella A, Vinson GP (1997) Immunolocalisation of angiotensin II receptors in icefish (Chionodraco hamatus) tissues. J Endocrinol 154:193–200

    Article  CAS  PubMed  Google Scholar 

  • Masini MA, Uva B, Devecchi M, Napoli L (1994) Renin-like activity, angiotensin I-converting enzyme-like activity, and osmoregulatory peptides in the dogfish rectal gland. Gen Comp Endocrinol 93:246–254

    Article  CAS  PubMed  Google Scholar 

  • McMillen IC, Adams MB, Ross JT et al (2001) Fetal growth restriction: adaptations and consequences. Reproduction 122:195–204

    Article  CAS  PubMed  Google Scholar 

  • Mimassi N, Lancien F, Le Mevel JC (2009) Central and peripheral cardiovascular effects of angiotensin III in trout. Trends in comparative endocrinology and neurobiology. Ann NY Acad Sci 1163:469–471

    Article  CAS  PubMed  Google Scholar 

  • Mizogami S, Oguri M, Sokabe H, Nishimura H (1968) Presence of renin in the glomerular and aglomerular kidney of marine teleosts. Am J Physiol 215:991–994

    CAS  PubMed  Google Scholar 

  • Moeller I, Small DH, Reed G, Harding JW, Mendelsohn FAO, Chai SY (1996) Angiotensin IV inhibits neurite outgrowth in cultured embryonic chicken sympathetic neurones. Brain Res 725:61–66

    Article  CAS  PubMed  Google Scholar 

  • Morgan T, Davis J, Gillies A (1982) Release of renin into the circulation. Kidney Int 12:S63–S66

    CAS  Google Scholar 

  • Morris JL, Gibbins IL (1983) Innervation of the renal vasculature of the toad (Bufo marinus). Cell Tissue Res 231:357–376

    Article  CAS  PubMed  Google Scholar 

  • Murphy TJ, Nakamura Y, Takeuchi K, Alexander RW (1993) Accelerated Communication: a cloned angiotensin receptor isoform from the turkey adrenal gland is pharmacologically distinct from mammalian angiotensin receptors. Mol Pharmacol 44:1–7

    CAS  PubMed  Google Scholar 

  • Naftilan AJ, Pratt RE, Eldridge CS, Lin HL, Dzau VJ (1989) Angiotensin II Induces c-fos expression in smooth muscle via transcriptional control. Hypertension 13:706–711

    Article  CAS  PubMed  Google Scholar 

  • Nagata S, Kitamura K (2015) 41(156):105–110

  • Nagata S, Kato J, Kuwasako K, Kitamura K (2010) Plasma and tissue levels of proangiotensin-12 and components of the renin–angiotensin system (RAS) following low- or high-salt feeding in rats. Peptides 31(5):889–892

    Article  CAS  PubMed  Google Scholar 

  • Nagata S, Hatakeyama K, Asami M et al (2013) Big angiotensin-25: a novel glycosylated angiotensin-related peptide isolated from human urine. Biochem Biophys Res Commun 441:757–762

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Nishimura H, Khosla MC (1982) Vasodepressor action of angiotensin in conscious chickens. Am J Physiol Heart Circ Physiol 243:H456–H462

    CAS  Google Scholar 

  • Nakamura Y, Madey MA, Nishimura H, Quach D, Barajas L (1992) Lack of control of renin release by adrenergic nervous system in the aglomerular toadfish. Gen Comp Endocrinol 88:62–75

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Nakajima T, Sokabe H (1973) Comparative studies on angiotensins. III. Structure of fowl angiotensin and its identification by DNS-method. Chem Pharm Bull 21:2085–2087

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Nakajima T, Sokabe H (1977) Comparative studies on angiotensin. IV. Structure of snake (Elaphe climacophora) angiotensin. Chem Pharm Bull 25:3255–3260

    Article  CAS  PubMed  Google Scholar 

  • Navar LG, Harrison-Bernard LM, Imig JD, Wang C-T, Cervenka L, Mitchell KD (1999) Intrarenal angiotensin II generation and renal effects of AT1 receptor blockade. J Am Soc Nephrol 10:S266–S272

    CAS  PubMed  Google Scholar 

  • Nguyen G, Muller DN (2010) The biology of the (pro)renin receptor. J Am Soc Nephrol 21:18–23

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H (1980) Comparative endocrinology of renin and angiotensin. In: Johnson JA, Anderson RR (eds) The renin-angiotensin system. Plenum, New York, pp 29–77

    Chapter  Google Scholar 

  • Nishimura H (1985) Evolution of the renin-angiotensin system and its role in control of cardiovascular function in fishes. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary biology of primitive fishes. Plenum, New York, pp 275–293

    Chapter  Google Scholar 

  • Nishimura H (1987) Role of the renin-angiotensin system in osmoregulation. In: Pang PKT, Schreibman MP (eds) Vertebrate endocrinology: fundamentals and biomedical implications. Academic, New York, pp 157–187

    Google Scholar 

  • Nishimura H (2001) Angiotensin receptors-evolutionary overview and perspectives. Comp Biochem Physiol Part A 128:11–30

    Article  CAS  Google Scholar 

  • Nishimura H (2004) Phylogeny and ontogeny of the renin-angiotensin system. In: Unger T, Scholkens BA (eds) Angiotensin. Handbook of experimental pharmacology, vol 163, part 1. Springer, Berlin, pp 31–70

  • Nishimura H, Bailey JR (1982) Intrarenal renin-angiotensin system in primitive vertebrates. Kidney Int 22(Suppl 12):S185–S192

    Google Scholar 

  • Nishimura H, Madey MA (1989) Signals controlling renin release in aglomerular toadfish. Fish Physiol Biochem 7:323–329

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Sawyer WH (1976) Vasopressor, diuretic, and natriuretic responses to angiotensins by the American eel, Anguilla rostrata. Gen Comp Endocrinol 29:337–348

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Sokabe H (1968) The role of angiotensinases in the renin-angiotensin system. Proc Symp Chem Physiol Pathol 8:116–120

    Google Scholar 

  • Nishimura H, Oguri M, Ogawa M, Sokabe H, Imai M (1970) Absence of renin in kidneys of elasmobranchs and cyclostomes. Am J Physiol 218:911–915

    CAS  PubMed  Google Scholar 

  • Nishimura H, Ogawa M, Sawyer WH (1973) Renin-angiotensin system in primitive bony fishes and a holocephalian. Am J Physiol 224:950–956

    CAS  PubMed  Google Scholar 

  • Nishimura H, Sawyer WH, Nigrelli RF (1976) Renin, cortisol and plasma volume in marine teleost fishes adapted to dilute media. J Endocrinol 70:47–59

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Crofton JT, Norton VM, Share L (1977) Angiotensin generation in teleost fish determined by radioimmunoassay and bioassay. Gen Comp Endocrinol 32:236–247

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Norton VM, Bumpus FM (1978) Lack of specific inhibition of angiotensin II in eels by angiotensin antagonists. Am J Physiol Heart Circ Physiol 235:H95–H103

    CAS  Google Scholar 

  • Nishimura H, Lunde LG, Zucker A (1979) Renin response to hemorrhage and hypotension in the aglomerular toadfish Opsanus tau. Am J Physiol Heart Circ Physiol 237:H105–H111

    CAS  Google Scholar 

  • Nishimura H, Madey MA, Mugaas JN, Khosla MC, Crofton JT (1981a) Radioimmunoassay of fowl angiotensin I. Gen Comp Endocrinol 45:262–272

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Nakamura Y, Taylor AA, Madey MA (1981b) Renin-angiotensin and adrenergic mechanisms in control of blood pressure in fowl. Hypertension 3(Suppl 1):I-41–I-49

    Article  CAS  Google Scholar 

  • Nishimura H, Madey M, Bailey JR (1982a) Renin and blood pressure responses to hemorrhage and hypotensive drugs in chickens. Fed Proc 41:1343

    Google Scholar 

  • Nishimura H, Nakamura Y, Sumner RP, Khosla MC (1982b) Vasopressor and depressor actions of angiotensin in the anesthetized fowl. Am J Physiol Heart Circ Physiol 242:H314–H324

    CAS  Google Scholar 

  • Nishimura H, Walker OE, Patton CM, Madison AB, Chiu AT, Keiser J (1994) Novel angiotensin receptor subtypes in fowl. Am J Physiol Regul Integr Comp Physiol 256:R1174–R1181

    Google Scholar 

  • Nishimura H, Yang Y, Hubert C et al (2003) Maturation-dependent changes of a angiotensin receptor expression in fowl. Am J Physiol Regul Integr Comp Physiol 285:R231–R242

    Article  CAS  PubMed  Google Scholar 

  • Nobata S, Takei Y (2011) The area postrema in hindbrain is a central player for regulation of drinking behavior in Japanese eels. Am J Physiol Regul Integr Comp Physiol 300:R1569–R1577

    Article  CAS  PubMed  Google Scholar 

  • Nobata S, Ando M, Takei Y (2013) Hormonal control of drinking behavior in teleost fishes; insights from studies using eels. Gen Comp Endocrinol 192:214–221

    Article  CAS  PubMed  Google Scholar 

  • Okawara Y, Karakida T, Yamaguchi K, Kobayashi H (1985) Diurnal rhythm of water intake and plasma angiotensin II in the Japanese quail (Coturnix coturnix japonica). Gen Comp Endocrinol 58:89–92

    Article  CAS  PubMed  Google Scholar 

  • Olson K (1992) Blood and extracellular fluid volume regulation: role of the renin-angiotensin system, kallikrein-kinin system, and atrial natriuretic peptides. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology, vol 12., Part B. The cardiovascular system. Academic, San Diego, pp 135–254

    Google Scholar 

  • Olson KR, Chavez A, Conklin DJ et al (1994) Localization of angiotensin II responses in the trout cardiovascular system. J Exp Biol 194:117–138

    CAS  PubMed  Google Scholar 

  • Opdyke DF, Holcombe R (1976) Response to angiotensins I and II and to AI-converting-enzyme inhibitor in a shark. Am J Physiol 231:1750–1753

    CAS  PubMed  Google Scholar 

  • Oudit GY, Butler DG (1995) Angiotensin II and cardiovascular regulation in a freshwater teleost, Anguilla rostrata LeSueur. Am J Physiol Regul Integr Comp Physiol 269:R726–R735

    CAS  Google Scholar 

  • Pamantung TF, Leroy JP, Mabin D, Le Mevel J-C (1997) Role of dorsal vagal motor nucleus in angiotensin II-mediated tachycardia in the conscious trout Oncorhynchus mykiss. Brain Res 772:167–175

    Article  CAS  PubMed  Google Scholar 

  • Pang PKT, Pang RK, Sawyer WH (1974) Environmental calcium and the sensitivity of killifish (Fundulus heteroclitus) in bioassays for the hypocalcemic response to Stannius corpuscles from killifish and cod (Gadus morhua). Endocrinology 94:548–555

    Article  CAS  PubMed  Google Scholar 

  • Parkyn G, Aves SJ, Brown JA (1997) Cloning and characterisation of the rainbow trout angiotensin receptor. In: Kawashima S, Kikuyama S (eds) Advances in comparative endocrinology. Proceedings of the XIIIth International Congress of Comparative Endocrinology. Monduzzi Editore, Bologna, Italy, pp 1329–1332

  • Pérodin J, Bossé R, Gagnon S et al (1996) Structure-activity relationship of the agonist-antagonist transition on the type 1 angiotensin II receptor; the search for inverse agonists. In: Raizada MK, Philips MI, Sumners C (eds) Recent advances in cellular and molecular aspects of angiotensin receptors, vol 396., Advances in experimental medicine and biology. Plenum, New York, pp 131–143

    Chapter  Google Scholar 

  • Perrott MN, Balment RJ (1990) The renin-angiotensin system and the regulation of plasma cortisol in the flounder, Platichthys flesus. Gen Comp Endocrinol 78:414–420

    Article  CAS  PubMed  Google Scholar 

  • Perry SF, Ellis K, Russell J, Bernier NJ, Montpetit C (2011) Effects of chronic dietary salt loading on the renin angiotensin and adrenergic systems of rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 301:R811–R821

    Article  CAS  PubMed  Google Scholar 

  • Phillips MI, Speakman EA, Kimura B (1993) Tissue renin-angiotensin systems. In: Raizada MK, Phillips MI, Summers C (eds) Recent advances in cellular and molecular biology of the renin-angiotensin system. Plenum, New York, pp 97–130

    Google Scholar 

  • Polanco MJ, Mata MI, Agapito MT, Recio JM (1990) Angiotensin-converting enzyme distribution and hypoxia response in mammal, bird, and fish. Gen Comp Endocrinol 79:240–245

    Article  CAS  PubMed  Google Scholar 

  • Propper CR, Johnson WE (1994) Angiotensin II induces water absorption behavior in two species of desert anurans. Hormones Behav 28:41–52

    Article  CAS  Google Scholar 

  • Propper CR, Hillyard SD, Johnson WE (1995) Central angiotensin II induces thirst-related responses in an amphibian. Hormones Behav 29:74–84

    Article  CAS  Google Scholar 

  • Proto MC, Coviello A, Khosla MC, Bumpus FM (1983) Effects of frog-skin angiotensin II in amphibians. Hypertension 5(Suppl 5):V101–V104

    Article  CAS  PubMed  Google Scholar 

  • Pupilli C, Gomez RA, Tuttle JB, Peach MJ, Carey RM (1991) Spatial association of renin-containing cells and nerve fibers in developing rat kidney. Pediatr Nephrol 5:690–695

    Article  CAS  PubMed  Google Scholar 

  • Qin ZL, Yan HQ, Nishimura H (1999) Vascular angiotensin II receptor and calcium signaling in toadfish. Gen Comp Endocrinol 115:122–131

    Article  CAS  PubMed  Google Scholar 

  • Rankin JC (2002) Drinking in hagfishes and lampreys. In: Hazon N, Flik F (eds) Osmoregulation and drinking in vertebrates. BIOS, Oxford, pp 1–18

  • Rankin JC, Watanabe TX, Nakajima K, Broadhead C, Takei Y (2004) Identification of Angiotensin I in a Cyclostome, Lampetra fluviatilis. Source Zool Sci 21(2):173–179

    Article  CAS  Google Scholar 

  • Reboreda JC, Segura ET (1989) Water balance effects of systemic and intracerebroventricular administration of angiotensin II in the toad Bufo arenarum. Comp Biochem Physiol 93A:505–509

    Article  CAS  Google Scholar 

  • Ren Y-L, Carretero OA, Garvin JL (2002) Role of mesangial cells and gap junctions in tubuloglomerular feedback. Kidney Int 62:525–531

    Article  PubMed  Google Scholar 

  • Rider SA, Mullins LJ, Verdon RF, MacRae CA, Mullins JJ (2015) The pronephric renin-expressing cells of zebrafish are postglomerular. Am J Physiol Renal Physiol 309:F531–F539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell MJ, Klemmer AM, Olson KR (2001) Angiotensin signaling and receptor types in teleost fish. Comp Biochem Physiol Part A 128:41–51

    Article  CAS  Google Scholar 

  • Sandberg K, Ji H (2001) Comparative analysis of amphibian and mammalian angiotensin receptors. Comp Biochem Physiol Part A 128:53–75

    Article  CAS  Google Scholar 

  • Sandberg K, Ji H, Millan MA, Catt KJ (1991) Amphibian myocardial angiotensin II receptors are distinct from mammalian AT1 and AT2 receptor subtypes. FEBS Lett 284:281–284

    Article  CAS  PubMed  Google Scholar 

  • Sandor T, Fazekas AG, Robinson BH (1976) The biosynthesis of corticosteroids throughout the vertebrates. In: Chester-Jones I, Henderson W (eds) General, comparative and endocrinology of the adrenal cortex, vol 1. Academic, New York, pp 25–142

    Google Scholar 

  • Sawyer WH (1970) Vasopressor, diuretic, and natriuretic responses by lungfish to arginine vasotocin. Am J Physiol 218:1789–1794

    CAS  PubMed  Google Scholar 

  • Sawyer WH, Blair-West JR, Simpson PA, Sawyer MK (1976) Renal responses of Australian lungfish to vasotocin, angiotensin II, and NaCl infusion. Am J Physiol 231:593–602

    CAS  PubMed  Google Scholar 

  • Schindler SL, Gildersleeve RP (1987) Comparison of recovery from hemorrhage in birds and mammals. Comp Biochem Physiol 87A(3):533–542

    Article  Google Scholar 

  • Schnermann J, Levine DZ (2003) Paracrine factors in tubuloglomerular feedback: adenosine, ATP, and nitric oxide. Annu Rev Physiol 65:501–529

    Article  CAS  PubMed  Google Scholar 

  • Sedman AB, Kershaw DB, Bunchman TE (1995) Recognition and management of angiotensin converting enzyme inhibitor fetopathy. Pediatr Nephrol 9:382–385

    Article  CAS  PubMed  Google Scholar 

  • Sequeira López ML, Gomez RA (2011) Development of the renal arterioles. J Am Soc Nephrol 22:2156–2165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sequeira López ML, Pentz ES, Nomasa T, Smithies O, Gomez RA (2004) Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6:719–728

    Article  PubMed  Google Scholar 

  • Shimada T, Fabian M, Yan HQ, Nishimura H (1998) Control of vascular smooth muscle cell growth in fowl. Gen Comp Endocrinol 112:115–128

    Article  CAS  PubMed  Google Scholar 

  • Smith RD (1996) Atypical (non-AT1, non-AT2) angiotensin receptors. In: Raizada MK, Phillips MI, Sumners C (eds) Recent advances in cellular and molecular aspects of angiotensin receptors. Advances in experimental medicine and biology, vol 396. Plenum, New York, pp 237–245

  • Sokabe H, Ogawa M (1974) Comparative studies of the juxtaglomerular apparatus. Int Rev Cytol 37:271–327

    Article  CAS  PubMed  Google Scholar 

  • Sokabe H, Ogawa M, Oguri M, Nishimura H (1969) Evolution of the juxtaglomerular apparatus in the vertebrate kidneys. Texas Rept Biol Med 27:867–885

    CAS  Google Scholar 

  • Sokabe H, Nishimura H, Ogawa M, Oguri M (1970) Determination of renin in the corpuscles of Stannius of the teleost. Gen Comp Endocrinol 14:510–516

    Article  CAS  PubMed  Google Scholar 

  • Stallone JN, Nishimura H, Khosla MC (1989) Angiotensin II vascular receptors in fowl aorta: binding specificity and modulation by divalent cations and guanine nucleotides. J Pharmacol Exp Ther 251:1076–1082

    CAS  PubMed  Google Scholar 

  • Stallone JN, Nishimura H, Nasjletti A (1990) Angiotensin II binding sites in aortic endothelium of domestic fowl. Am J Physiol Regul Integr Comp Physiol 258:R777–R782

    CAS  Google Scholar 

  • Stephens GA (1981) Blockade of angiotensin pressor activity in the freshwater turtle. Gen Comp Endocrinol 45:364–371

    Article  CAS  PubMed  Google Scholar 

  • Stephens GA (1984) Angiotensin and norepinephrine effects on isolated vascular strips from a reptile. Gen Comp Endocrinol 54:175–180

    Article  CAS  PubMed  Google Scholar 

  • Stephens GA, Creekmore JS (1984) Response of plasma renin activity to hypotension and angiotensin converting enzyme inhibitor in the turtle. J Comp Physiol B 154:287–294

    Article  CAS  Google Scholar 

  • Swanson GN, Hanesworth JM, Sardinia MF et al (1992) Discovery of a distinct binding site for angiotensin II (3–8), a putative angiotensin IV receptor. Regul Pept 40:409–419

    Article  CAS  PubMed  Google Scholar 

  • Takei Y (1977) The role of the subfornical organ in drinking induced by angiotensin in the Japanese quail, Coturnix coturnix japonica. Cell Tissue Res 185:175–181

    Article  CAS  PubMed  Google Scholar 

  • Takei Y (1999) Novel angiotensin and angiotensin receptors in cartilaginous fish. In: Symposium, Angiotensin receptors and signaling: evolution and perspectives. Society for Experimental Biology, Washington, DC

  • Takei Y (2000) Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation. Jpn J Physiol 50:171–186

    Article  CAS  PubMed  Google Scholar 

  • Takei Y (2002) Hormonal control of drinking in eels: an evolutionary approach. In: Hazon N, Flik G (eds) Osmoregulation and drinking in vertebrates. BIOS, Oxford, pp 61–82

  • Takei Y, Hasegawa Y (1990) Vasopressor and depressor effects of native angiotensins and inhibition of these effects in the Japanese quail. Gen Comp Endocrinol 79:12–22

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Tsuchida T (2000) Role of the renin-angiotensin system in drinking of seawater-adapted eels Anguilla japonica: a reevaluation. Am J Physiol Regul Integr Comp Physiol 279:R1105–R1111

    CAS  PubMed  Google Scholar 

  • Takei Y, Hirano T, Kobayashi H (1979a) Angiotensin and water intake in the Japanese eel, Anguilla japonica. Gen Comp Endocrinol 38:466–475

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Kobayashi H, Yanagisawa M, Bando T (1979b) Involvement of catecholaminergic nerve fibers in angiotensin II-induced drinking in the Japanese quail, Coturnix coturnix japonica. Brain Res 174:229–244

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Uemura H, Kobayashi H (1985) Angiotensin and hydromineral balance: with special reference to induction of drinking behavior. In: Lofts B, Holmes WN (eds) Current trends in comparative endocrinology. Hong Kong University Press, Hong Kong, pp 933–936

    Google Scholar 

  • Takei Y, Stallone JN, Nishimura H, Campanile CP (1988) Angiotensin II receptors in the fowl aorta. Gen Comp Endocrinol 69:205–216

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Hasegawa Y, Watanabe TX, Nakajima K, Hazon N (1993a) A novel angiotensin I isolated from an elasmobranch fish. J Endocrinol 139:281–285

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Silldorff EP, Hasegawa Y et al (1993b) New angiotensin I isolated from a reptile, Alligator mississippiensis. Gen Comp Endocrinol 90:214–219

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Itahara Y, Butler DG, Watanabe TX, Oudit GY (1998) Tetrapod-type [Asp1] angiotensin is present in a holostean fish, Amia calva. Gen Comp Endocrinol 110:140–146

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Joss JM, Kloas W, Rankin JC (2004) Identification of angiotensin I in several vertebrate species: its structural and functional evolution. Gen Comp Endocrinol 135:286–292

    Article  CAS  PubMed  Google Scholar 

  • Takemoto Y, Nakajima T, Hasegawa Y et al (1983) Chemical structures of angiotensins formed by incubating plasma with the kidney and the corpuscles of Stannius in the chum salmon, Oncorhynchus keta. Gen Comp Endocrinol 51:219–227

    Article  CAS  PubMed  Google Scholar 

  • Thomas WG (1999) Regulation of angiotensin II type 1 (AT1) receptor function. Regul Pept 79:9–23

    Article  CAS  PubMed  Google Scholar 

  • Thomas WG, Mendelsohn FA (2003) Angiotensin receptors: form and function and distribution. Int J Biochem Cell Biol 35:774–779

    Article  CAS  PubMed  Google Scholar 

  • Thomson SC, Blantz RC (2000) Ions and signal transduction in the macula densa. J Clin Invest 106:633–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tierney ML, Luke G, Cramb G, Hazon N (1995) The role of the renin-angiotensin system in the control of blood pressure and drinking in the European eel, Anguilla anguilla. Gen Comp Endocrinol 100:39–48

    Article  CAS  PubMed  Google Scholar 

  • Tierney M, Takei Y, Hazon N (1997) The presence of angiotensin II receptors in elasmobranchs. Gen Comp Endocrinol 105:9–17

    Article  CAS  PubMed  Google Scholar 

  • Tran van Chuoi M, Dolphin CT, Barker S, Clark AJ, Vinson GP (1999) Molecular cloning and characterization of the cDNA encoding the angiotensin II receptor of European eel, Anguilla anguilla. GenBank Data Base AJ005132

  • Traynor TR, Smart A, Briggs JP, Schnermann J (1999) Inhibition of macula densa-stimulated renin secretion by pharmacological blockade of cyclooxygenase-2. Am J Physiol 277 Renal Physiol 46:F706–F710

  • Uchiyama M, Maejima S, Wong MKS et al (2014) Changes in plasma angiotensin II, aldosterone, arginine vasotocin, corticosterone, and electrolyte concentrations during acclimation to dry condition and seawater in the crab-eating frog. Gen Comp Endocrinol 195:40–46

    Article  CAS  PubMed  Google Scholar 

  • Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348–22357

    CAS  PubMed  Google Scholar 

  • Uva B, Masini MA, Hazon N, O’Toole LB, Henderson IW, Ghiani P (1992) Renin and angiotensin converting enzyme in elasmobranchs. Gen Comp Endocrinol 86:407–412

    Article  CAS  PubMed  Google Scholar 

  • Vinson GP, Whitehouse BJ, Goddard C, Sibley CP (1979) Comparative and evolutionary aspects of aldosterone secretion and zona glomerulosa function. J Endocrinol 81:5–24

    Google Scholar 

  • Walker OE, Nishimura H, Taylor A, Lester B (1993) Novel angiotensin receptor subtypes in domestic fowl. FASEB J 7:A406

    Google Scholar 

  • Watanabe T, Inoue K, Takei Y (2009) Identification of angiotensinogen genes with unique and variable angiotensin sequences in chondrichthyans. Gen Comp Endocrinol 161:115–122

    Article  CAS  PubMed  Google Scholar 

  • Welch WJ, Tojo A, Lee JU, Kang DG, Schnackenber CG, Wilcox CS (1999) Nitric oxide synthase in the JGA of the SHR: expression and role in tubuloglomerular feedback. Renal Physiol no.1. Am J Physiol 277:F130–F138

    CAS  PubMed  Google Scholar 

  • West NH, Kimmel P, Topor ZL, Evered MD (1998) The role of angiotensin in arterial blood pressure regulation in the toad Bufo marinus. J Exp Biol 201:2219–2224

    CAS  PubMed  Google Scholar 

  • Wideman RF Jr, Nishimura H, Bottje WG, Glahn RP (1993) Reduced renal arterial perfusion pressure stimulates renin release from domestic fowl kidneys. Gen Comp Endocrinol 89:405–414

    Article  CAS  PubMed  Google Scholar 

  • Wilson JX, Butler DG (1983a) Catecholamine-mediated pressor responses to angiotensin II in the pekin duck, Anas platyrhynchos. Gen Comp Endocrinol 51:477–489

    Article  CAS  PubMed  Google Scholar 

  • Wilson JX, Butler DG (1983b) 6-Hydroxydopamine treatment diminishes noradrenergic and pressor responses to angiotensin II in adrenalectomized ducks. Endocrinology 112:653–658

    Article  CAS  PubMed  Google Scholar 

  • Wong MK-S, Takei Y (2011) Characterization of a native angiotensin from an anciently diverged serine protease inhibitor in lamprey. J Endocrinol 209:127–137

    Article  CAS  PubMed  Google Scholar 

  • Wong MK-S, Takei Y (2012) Changes in plasma angiotensin subtypes in Japanese eel acclimated to various salinities from deionized water to double-strength seawater. Gen Comp Endocrinol 178:250–258

    Article  CAS  PubMed  Google Scholar 

  • Wong MK-S, Takei Y (2013) Angiotensin AT2 receptor activates the cyclic-AMP signaling pathway in eel. Mol Cell Endocrinol 365:292–302

    Article  CAS  PubMed  Google Scholar 

  • Yamada C, Noji S, Shioda S, Nakai Y, Kobayashi H (1990) Intragranular colocalization of arginine vasopressin- and angiotensin II-like immunoreactivity in the hypothalamo-neurohypophysial system of the goldfish, Carassius auratus. Zool Sci 7:257–263

    CAS  Google Scholar 

  • Yamaguchi K, Nishimura H (1988) Angiotensin II-induced relaxation of fowl aorta. Am J Physiol Regul Integr Comp Physiol 255:R591–R599

    CAS  Google Scholar 

  • Zehr JE, Hasbargen JA, Kurz KD (1976) Reflex suppression of renin secretion during distention of cardiopulmonary receptors in dogs. Circ Res 38:232–239

    Article  CAS  PubMed  Google Scholar 

  • Zehr JE, Standen DJ, Cipolle MD (1981) Characterization of angiotensin pressor responses in the turtle Pseudemys scripta. Am J Physiol Regul lntegr Comp Physiol 240:R276–R281

    CAS  Google Scholar 

  • Zhang Y, Jenkinson E, Olson KR (1995) Vascular compliance and mean circulatory filling pressure in trout: effects of ACE inhibition. Am J Physiol Heart Circ Physiol 268:H1814–H1820

    CAS  Google Scholar 

  • Zucker A, Nishimura H (1981) Renal responses to vasoactive hormones in the aglomerular toadfish, Opsanus tau. Gen Comp Endocrinol 43:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is deeply indebted to Dr. Marty K. S. Wong, Atmosphere and Ocean Research Institute of the University of Tokyo, Kashiwa City, Chiba, Japan, for conceptual suggestions and help. This work was supported by a research grant provided by Niigata University of Health and Welfare, Niigata, Japan, to Hiroko Nishimura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko Nishimura.

Ethics declarations

Conflicts of interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimura, H. Renin-angiotensin system in vertebrates: phylogenetic view of structure and function. Anat Sci Int 92, 215–247 (2017). https://doi.org/10.1007/s12565-016-0372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0372-8

Keywords

Navigation