Skip to main content

Anatomy, histology and elemental profile of long bones and ribs of the Asian elephant (Elephas maximus)

Abstract

This study evaluated the morphology and elemental composition of Asian elephant (Elephas maximus) bones (humerus, radius, ulna, femur, tibia, fibula and rib). Computerized tomography was used to image the intraosseous structure, compact bones were processed using histological techniques, and elemental profiling of compact bone was conducted using X-ray fluorescence. There was no clear evidence of an open marrow cavity in any of the bones; rather, dense trabecular bone was found in the bone interior. Compact bone contained double osteons in the radius, tibia and fibula. The osteon structure was comparatively large and similar in all bones, although the lacuna area was greater (P < 0.05) in the femur and ulna. Another finding was that nutrient foramina were clearly present in the humerus, ulna, femur, tibia and rib. Twenty elements were identified in elephant compact bone. Of these, ten differed significantly across the seven bones: Ca, Ti, V, Mn, Fe, Zr, Ag, Cd, Sn and Sb. Of particular interest was the finding of a significantly larger proportion of Fe in the humerus, radius, fibula and ribs, all bones without an open medullary cavity, which is traditionally associated with bone marrow for blood cell production. In conclusion, elephant bones present special characteristics, some of which may be important to hematopoiesis and bone strength for supporting a heavy body weight.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

Mg:

Magnesium (12)

Al:

Aluminum (13)

Si:

Silicon (14)

P:

Phosphorus (15)

S:

Sulfur (16)

K:

Potassium (19)

Ca:

Calcium (20)

Ti:

Titanium (22)

V:

Vanadium (23)

Cr:

Chromium (24)

Mn:

Manganese (25)

Fe:

Iron (26)

Ni:

Nickel (28)

Cu:

Copper (29)

Zn:

Zinc (30)

Zr:

Zirconium (30)

Ag:

Silver (47)

Cd:

Cadmium (48)

Sn:

Tin (50)

Sb:

Antimony (51)

pb:

Lead (82)

LE:

Light element from H = hydrogen (1) to Na = sodium (11)

References

  • Amr AM (2011) Trace elements in Egyptian teeth. Int J Phys Sci 6:6241–6245

    CAS  Google Scholar 

  • Bessis MC, Breton-Gorius J (1962) Iron metabolism in the bone marrow as seen by electron microscopy: a critical review. Blood 19:635–663

    CAS  PubMed  Google Scholar 

  • Brodziak-Dopierała B, Kwapuliński J, Sobczyk K, Wiechuła D (2015) Analysis of the content of cadmium and zinc in parts of the human hip joint. Biol Trace Elem Res 163:73–80

    Article  PubMed  Google Scholar 

  • Buddhachat K, Klinhom S, Siengdee P et al (2016a) Elemental analysis of bone, teeth, horn and antler in different animal species using non-invasive handheld X-ray fluorescence. PLoS One 11:e0155458

    Article  PubMed  PubMed Central  Google Scholar 

  • Buddhachat K, Thitaram C, Brown JL et al (2016b) Use of handheld X-ray fluorescence as a non-invasive method to distinguish between Asian and African elephant tusks. Sci Rep 6:24845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chanpiwat P, Sthiannopkao S (2014) Status of metal levels and their potential sources of contamination in Southeast Asian rivers. Environ Sci Pollut Res Int 21:220–223

    CAS  Article  PubMed  Google Scholar 

  • Chongsuvivatwong V, Kaeosanit S, Untimanon O (2011) Twenty-six tons of lead oxide used per year in wooden boat building and repairing in southern Thailand. Environ Geochem Health 33:301–307

    CAS  Article  PubMed  Google Scholar 

  • Chovancová H, Martiniaková M, Omelka R, Grosskopf B, Toman T (2011) Structural changes in femoral bone tissue of rats after intraperitoneal administration of nickel. Pol J Environ Stud 20:1147–1152

    Google Scholar 

  • Christensen AM, Smith MA, Thomas RM (2012) Validation of X-ray fluorescence spectrometry for determining osseous or dental origin of unknown material. J Forensic Sci 57:47–51

    CAS  Article  PubMed  Google Scholar 

  • Curtin AJ, Macdowell AA, Schaible EG, Roth VR (2012) Noninvasive histological comparison of bone growth patterns among fossil and extant neonatal elephantids using synchrotron radiation X-ray microtomography. J Vertebr Paleontol 32:939–955

    Article  Google Scholar 

  • Dermience M, Lognay G, Mathieu F, Goyens P (2015) Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 32:86–106

    CAS  Article  PubMed  Google Scholar 

  • Dickerson JW (1962) The effect of development on the composition of a long bone of the pig, rat and fowl. Biochem J 82:47–55

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Dollwet HH, Sorenson JR (1988) Roles of copper in bone maintenance and healing. Biol Trace Elem Res 18:39–48

    CAS  Article  PubMed  Google Scholar 

  • Fischer A, Wiechuła D, Przybyła-Misztela C (2013) Changes of concentrations of elements in deciduous teeth with age. Biol Trace Elem Res 154:427–432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Frandson RD, Wilke WL, Fails AD (2009) Anatomy and physiology of farm animals. Wiley-Blackwell, Iowa

    Google Scholar 

  • Hammer A (2015) The paradox of Wolff’s theories. Ir J Med Sci 184:13–22

    CAS  Article  PubMed  Google Scholar 

  • Hillier ML, Bell LS (2007) Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci 52:249–263

    Article  PubMed  Google Scholar 

  • Hori H (2002) The forensic application of comparative mammalian bone histology. Texas Tech University, Texas, p 82

  • Houssaye A, Fernandez V, Billet GJ (2015) Hyperspecialization in some South American endemic ungulates revealed by long bone microstructure. J Mammal Evol October 28:1–15

  • Hutchinson JR, Delmer C, Miller CE, Hildebrandt T, Pitsillides AA, Boyde A (2011) From flat foot to fat foot: structure, ontogeny, function, and evolution of elephant “sixth toes”. Science 334:1699–1703

    CAS  Article  PubMed  Google Scholar 

  • Kierdorf U, Stoffels D, Kierdorf H (2014) Element concentrations and element ratios in antler and pedicle bone of yearling red deer (Cervus elaphus) stags-a quantitative X-ray fluorescence study. Biol Trace Elem Res 162:124–133

    CAS  Article  PubMed  Google Scholar 

  • Legros R, Balmin N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144

    CAS  Article  PubMed  Google Scholar 

  • Lewis KD, Shepherdson DJ, Owens TM, Keele M (2010) A survey of elephant husbandry and foot health in North American zoos. Zoo Biol 29:221–236

    PubMed  Google Scholar 

  • Martiniaková M, Grosskopf B, Vondráková M, Omelka R, Fabis M (2006) Differences in femoral compact bone tissue microscopic structure between adult cows (Bos taurus) and pigs (Sus scrofa domestica). Anat Histol Embryol 35:167–170

    Article  PubMed  Google Scholar 

  • Mikota SK (2006) Hemolymphatic system. In: Fowler ME, Mikota SK (eds) Biology, medicine, and surgery of elephants. Blackwell, Iowa, pp 325–345

    Chapter  Google Scholar 

  • Miller MA, Hogan JN, Meehan CL (2016) Housing and demographic risk factors impacting foot and musculoskeletal health in African elephants [Loxodonta africana] and Asian elephants [Elephas maximus] in North American zoos. PLoS One 11:e0155223

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales JP, Roa HI, Zavando D, Suazo GI (2012) Determination of the species from skeletal remains through histomorphometric evaluation and discriminant analysis. Int J Morphol 30:1035–1041

    Article  Google Scholar 

  • Mori R, Kodaka T, Sano T, Yamagishi N, Asari M, Naito Y (2003) Comparative histology of the laminar bone between young calves and foals. Cells Tissues Organs 175:43–50

    CAS  Article  PubMed  Google Scholar 

  • Netter FH (2014) Atlas of human anatomy. Saunders Elsevier, Philadelphia

    Google Scholar 

  • Nganvongpanit K, Brown JL, Buddhachat K, Somgird C, Thitaram C (2015a) Elemental analysis of Asian elephant (Elephas maximus) teeth using X-ray fluorescence and a comparison to other species. Biol Trace Elem Res 170:94–105

    Article  PubMed  Google Scholar 

  • Nganvongpanit K, Phatsara M, Settakorn J, Mahakkanukrauh P (2015b) Differences in compact bone tissue microscopic structure between adult humans (Homo sapiens) and Assam macaques (Macaca assamensis). Forensic Sci Int 254:e1–e5

    Article  Google Scholar 

  • Nganvongpanit K, Buddhachat K, Brown JL (2016a) Comparison of bone tissue elements between normal and osteoarthritic pelvic bones in dogs. Biol Trace Elem Res 171:344–353

    CAS  Article  PubMed  Google Scholar 

  • Nganvongpanit K, Pradit W, Pitakarnnop T, Phatsara M, Chomdej S (2016b) Differences in osteon structure histomorphometry between Golden Retriever puppy and adult stages. Anat Sci Int. doi:10.1007/s12565-016-0345-y

    Google Scholar 

  • Nielsen FH (1991) Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation. FASEB J 5:2661–2667

    CAS  PubMed  Google Scholar 

  • Nielsen FH, Zimmerman TJ, Shuler TR, Brossart B, Uthus EO (1989) Evidence for a cooperative metabolic relationship between Nickel and vitamin B12 in rats. J Trace Elem Exp Med 2:21–29

    CAS  Google Scholar 

  • Panagiotopoulou O, Pataky TC, Hill Z, Hutchinson JR (2012) Statistical parametric mapping of the regional distribution and ontogenetic scaling of foot pressures during walking in Asian elephants (Elephas maximus). J Exp Biol 215:1584–1593

    Article  PubMed  Google Scholar 

  • Pankovich AM, Simmons DJ, Kulkarni VV (1974) Zonal osteons in cortical bone. Clin Orthop Relat Res 100:356–363

    Article  Google Scholar 

  • Parkpian P, Leong ST, Laortanakul P, Thunthaisong N (2003) Regional monitoring of lead and cadmium contamination in a tropical grazing land site, Thailand. Environ Monit Assess 85:157–173

    CAS  Article  PubMed  Google Scholar 

  • Poonkothai M, Vijayavathai BS (2012) Nickel as an essential element and a toxicant. IJES 1:285–288

    Google Scholar 

  • Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Roth VL (1984) How elephants grow: heterochrony and the calibration of developmental stages in some living and fossil species. J Vert Paleont 4:126–145

    Article  Google Scholar 

  • Seeman E (2006) Bone structure and strength. In: Seibel M, Robins SP, Bilezikian JP (eds) Dynamics of bone and cartilage metabolism. Academic, London, pp 213–220

    Chapter  Google Scholar 

  • Shil SK, Quasem MA, Rahman ML, Kibria ASMG, Uddin M, Ahasan ASML (2013) Macroanatomy of the bones of pelvis and hind limb of an Asian elephant (Elephas maximus). Int J Morphol 31:1473–1478

    Article  Google Scholar 

  • Skedros JG, Sorenson SM, Jenson NH (2007) Are distributions of secondary osteon variants useful for interpreting load history in mammalian bones? Cells Tissues Organs 185:285–307

    Article  PubMed  Google Scholar 

  • Smuts MM, Bezuidenhout AJ (1993) Osteology of the thoracic limb of the African elephant (Loxodonta africana). Onderstepoort J Vet Res 60:1–14

    CAS  PubMed  Google Scholar 

  • Smuts MM, Bezuidenhout AJ (1994) Osteology of the pelvic limb of the African elephant (Loxodonta africana). Onderstepoort J Vet Res 61:51–66

    CAS  PubMed  Google Scholar 

  • Todd NE (2010) Qualitative comparison of the cranio-dental osteology of the extant elephants, Elephas Maximus (Asian elephant) and Loxodonta africana (African elephant). Anat Rec (Hoboken) 293:62–73

    Article  Google Scholar 

  • Tzaphidou M, Zaichick V (2004) Sex and age related Ca/P ration in cortical bone of iliac crest of healthy humans. J Radioanal Nucl Chem 259:347–349

    Article  Google Scholar 

  • van der Merwe NJ, Bezuidenhout AJ, Seegers CD (1995) The skull and mandible of the African elephant (Loxodonta africana). Onderstepoort J Vet Res 62:245–260

    PubMed  Google Scholar 

  • Weissengruber GE, Egger GF, Hutchinson JR et al (2006) The structure of the cushions in the feet of African elephants (Loxodonta africana). J Anat 209:781–792

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mat Sci Eng C25:131–143

    CAS  Article  Google Scholar 

  • Yamaguchi M, Sugii K, Okada S (1982) Tin decreases femoral calcium independently of calcium homeostasis in rats. Toxicol Lett 10:7–10

    CAS  Article  PubMed  Google Scholar 

  • Zougrou IM, Katsikini M, Pinakidou F, Paloura EC, Papadopoulou L, Tsoukala E (2014) Study of fossil bones by synchrotron radiation micro-spectroscopic techniques and scanning electron microscopy. J Synchrotron Radiat 21:149–160

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for research funding from the Chiang Mai University (CMU) through the research administration office, which provided a budget to the Center of Excellence in Elephant Research and Education.

Authors’ contribution

KN. is a major contributor and designed and conducted all the experiments. K.N. and S.K. scanned all samples in this study using XRF. K.N. performed the CT scans and histology of compact bone. T.P. measured the osteon structures. C.T. and T.A. gave advice and supplied rare samples used in this study. K.N., K.B. and P.S. analyzed all data and performed statistical analysis. K.N, K.B. and J.B. assisted in discussions and writing of the manuscript. All authors read and approved the manuscript to published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korakot Nganvongpanit.

Ethics declarations

Ethical approval

No ethical approval was required for this study.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nganvongpanit, K., Siengdee, P., Buddhachat, K. et al. Anatomy, histology and elemental profile of long bones and ribs of the Asian elephant (Elephas maximus). Anat Sci Int 92, 554–568 (2017). https://doi.org/10.1007/s12565-016-0361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0361-y

Keywords

  • Bone
  • CT scan
  • Elephant
  • Mineral
  • Osteon