Skip to main content

Advertisement

Log in

Molecular mechanisms of experience-dependent structural and functional plasticity in the brain

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Experiences and environments have a variety of effects on brain plasticity at levels ranging from the molecular and cellular to the behavioral. Brain plasticity is one of the most important characteristics of animal survival. In particular, environmental enrichment and exercise induce many structural and functional changes in the brain, and it is noteworthy that these changes result in further beneficial effects at behavioral levels, such as improved learning behavior and antidepressant effects. The effects of enrichment and exercise, and the mechanisms involved in both, provide crucial evidence for the prevention and treatment of brain disorders. However, the enriched environment- and exercise-induced mechanisms underlying the structural and behavioral effects in the brain remain poorly understood. In this review I discuss the molecular mechanisms of environment- and experience-dependent brain plasticity based on the results of studies carried out by our research group at the Department of Neuroscience and Cell Biology, Osaka University. This review consists of three parts: first, a description of a role for the motor protein KIF1A in enhanced synaptogenesis and memory function induced by environmental enrichment; second, a discussion of the function of the 5-HT3 receptor in hippocampal neurogenesis and behavioral changes induced by exercise; third, a discussion of the role of the 5-HT3 receptor in fear extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K (2007) High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317:819–823

    Article  CAS  PubMed  Google Scholar 

  • Anderson BJ, Rapp DN, Baek DH, McCloskey DP, Coburn-Litvak PS, Robinson JK (2000) Exercise influences spatial learning in the radial arm maze. Physiol Behav 70:425–429

    Article  CAS  PubMed  Google Scholar 

  • Bachy A, Heaulme M, Giudice A et al (1993) SR 57227A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur J Pharmacol 237:299–309

    Article  CAS  PubMed  Google Scholar 

  • Bamji SX, Rico B, Kimes N, Reichardt LF (2006) BDNF mobilized synaptic vesicles and enhances synapse formation by disrupting cadherin-beta-catenin interactions. J Cell Biol 174:289–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460

    Article  CAS  PubMed  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  CAS  PubMed  Google Scholar 

  • Bednareke E, Caroni P (2011) β-Adducin is required for stable assembly of new synapses and improved memory upon environmental enrichment. Neuron 69:1132–1146

    Article  CAS  Google Scholar 

  • Benaroya-Milshtein N, Hollander N, Apter A et al (2004) Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. Eur J Neurosci 20:1341–1347

    Article  CAS  PubMed  Google Scholar 

  • Bennett JC, McRae PA, Levy LJ, Frick KM (2006) Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol Learn Mem 85:139–152

    Article  PubMed  Google Scholar 

  • Bequet F, Gomez-Merino D, Berthelot M, Guezennec Y (2001) Exercise-induced changes in brain glucose and serotonin revealed by microdialysis in rat hippocampus: effect of glucose supplementation. Acta Physiol Scand 173:223–230

    Article  CAS  PubMed  Google Scholar 

  • Blechert J, Michael T, Vriends N, Markgraf J, Wilhelm FH (2007) Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experimental, and behavioural responses. Behav Res Ther 45:2019–2033

    Article  PubMed  Google Scholar 

  • Bliss TVP, Goddard GV, Riives M (1983) Reduction of long-term potentiation in the dentate gyrus of the rat following selective depletion of monoamines. J Physiol 334:475–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  CAS  PubMed  Google Scholar 

  • Brunton LL, Lazo JS, Parker KL (2006) Goodman & Gilman’s The pharmacological basis of therapeutics. McGraw-Hill, New York

  • Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor 1 mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21:5678–5684

    CAS  PubMed  Google Scholar 

  • Castagne V, Moser P, Roux S, Porsolt RD (2011) Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci Chapter 8: Unit 8.10A. doi: 10.1002/0471142301.ns0810as55

  • Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472

    Article  CAS  PubMed  Google Scholar 

  • Davies PA, Pistis M, Hanna MC et al (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397:359–363

    Article  CAS  PubMed  Google Scholar 

  • Derkach V, Surprenant A, North RA (1989) 5-HT3 receptors are membrane ion channels. Nature 339:706–709

    Article  CAS  PubMed  Google Scholar 

  • Duman CH, Schlesinger L, Russell DS, Duman RS (2008) Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res 1199:148–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernfors P, Lee KF, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–150

    Article  CAS  PubMed  Google Scholar 

  • Ernst C, Olson AK, Pinel JP, Lam RW, Christie BR (2006) Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis? J Psychiatry Neurosci 31:84–92

    PubMed  PubMed Central  Google Scholar 

  • Faherty CJ, Kerley D, Smeyne RJ (2003) A Golgi–Cox morphological analysis of neuronal changes induced by environmental enrichment. Brain Res Dev Brain Res 141:55–61

    Article  CAS  PubMed  Google Scholar 

  • Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N (1992) Increased expression of brain-derived neurotrophic factor mRNA in rat is associated with improved spatial memory and enriched environment. Neurosci Lett 138:153–156

    Article  CAS  PubMed  Google Scholar 

  • Gangé J, Gélinas S, Martinoli MG et al (1998) AMPA receptor properties in adult rat hippocampus following environmental enrichment. Brain Res 799:16–25

    Article  Google Scholar 

  • Gogolla N, Galimberti I, Deguchi Y, Caroni P (2009) Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 62:510–525

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Merino D, Bequet F, Berthelot M, Chennaoui M, Guezennec CY (2001) Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain. Neurosci Lett 301:143–146

    Article  CAS  PubMed  Google Scholar 

  • Gould E (1999) Serotonin and hippocampal neurogenesis. Neuropsychopharmacology 21:46S–51S

    Article  CAS  PubMed  Google Scholar 

  • Greenwood BN, Foley TE, Day HEW et al (2003) Freewheel running prevents learned helplessness/behavioral depression: role of dorsal raphe serotonergic neurons. J Neurosci 23:2889–2898

    CAS  PubMed  Google Scholar 

  • Guthrie RM, Bryant RA (2006) Extinction learning before trauma and subsequent posttraumatic stress. Psychosom Med 68:307–311

    Article  PubMed  Google Scholar 

  • Harmer CJ, Reid CB, Ray MK, Goodwin GM, Cowen PJ (2006) 5HT3 antagonism abolishes the emotion potentiated startle effect in humans. Psychopharmacology 186:18–24

    Article  CAS  PubMed  Google Scholar 

  • Harris JA, Westbrook RF (1998) Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology 140:105–115

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Noda Y, Tananka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638

    Article  CAS  PubMed  Google Scholar 

  • Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC (2000) Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol 164:45–52

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, van Praag H, Gage FH (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5:262–269

    Article  CAS  PubMed  Google Scholar 

  • Johansen JP, Cain CK, Ostroff LE, LeDoux JE (2011) Molecular mechanisms of fear learning and memory. Cell 147:509–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsurabayashi S, Kubota H, Tokutomi N, Akaike N (2003) A distinct distribution of functional presynaptic 5-HT receptor subtypes on GABAergic nerve terminals projecting to single hippocampal CA1 pyramidal neurons. Neuropharmacology 44:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Kawa K (1994) Distribution and functional properties of 5-HT3 receptors in the rat hippocampal dentate gyrus: a patch-clamp study. J Neurophysiol 71:1935–1947

    CAS  PubMed  Google Scholar 

  • Kelly SP, Bratt AM, Hodge CW (2003) Targeted gene deletion of the 5-HT3A receptor subunit produces an anxiolytic phenotype in mice. Eur J Pharmacol 461:19–25

    Article  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  CAS  PubMed  Google Scholar 

  • Klempin F, Babu H, De Pietri Tonelli D, Alarcon E, Fabel K, Kempermann G (2010) Oppositional effects of serotonin receptors 5-HT1a, 2, and 2c in the regulation of adult hippocampal neurogenesis. Front Mol Neurosci 3:1–11

    Google Scholar 

  • Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N (2013) Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci 33:8270–8275

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Shimada S (2014) 5-hydroxytryptamine type-3A receptor in the process of fear extinction. Receptor Clin Invest 1:33–37

    Google Scholar 

  • Kondo M, Shimada S (2015a) Exercise-induced neuronal effects and the 5-HT3 receptor. Neurotransmitter 2:e764

    Google Scholar 

  • Kondo M, Shimada S (2015b) Serotonin and exercise-induced brain plasticity. Neurotransmitter 2:e793

    Google Scholar 

  • Kondo M, Takei Y, Hirokawa N (2012) Motor protein KIF1A is essential for hippocampal synaptogenesis and learning enhancement in an enriched environment. Neuron 73:743–757

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Nakamura Y, Ishida Y, Yamada T, Shimada S (2014) The 5-HT3A receptor is essential for fear extinction. Learn Mem 21:1–4

    CAS  PubMed Central  Google Scholar 

  • Kondo M, Nakamura Y, Ishida Y, Shimada S (2015) The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects. Mol Psychiatry 20:1428–1437

    Article  CAS  PubMed  Google Scholar 

  • Koyama S, Matsumato N, Kubo C, Akaike N (2000) Presynaptic 5-HT3 receptor-mediated modulation of synaptic GABA release in the mechanically dissociated rat amygdale neurons. J Physiol 529:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30:16796–16808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leggio MG, Mandolesi L, Federico F et al (2005) Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 163:78–90

    Article  PubMed  Google Scholar 

  • Makkar SR, Zhang SQ, Cranney J (2010) Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology 35:1625–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    CAS  PubMed  Google Scholar 

  • Maren S (2011) Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70:830–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14:417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432–437

    Article  CAS  PubMed  Google Scholar 

  • McMahon LL, Kauer JA (1997) Hippocampal interneurons are excited via serotonin-gated ion channels. J Neurophisiol 78:2493–2502

    CAS  Google Scholar 

  • Meeusen R, Thorre K, Chaouloff F et al (1996) Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats. Brain Res 740:245–252

    Article  CAS  PubMed  Google Scholar 

  • Moon HY, Kim SH, Yang YR et al (2012) Macrophage migration inhibitory factor mediates the antidepressant actions of voluntary exercise. Proc Natl Acad Sci USA 109:13094–13099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore RY, Halaris AE (1975) Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol 164:171–184

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17:3157–3167

    CAS  PubMed  Google Scholar 

  • Morales M, Battenberg E, de Lecea L, Bloom FE (1996a) The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus. Brain Res 731:199–202

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Battenberg E, de Lecea L, Sanna PP, Bloom FE (1996b) Cellular and subcellular immunolocalization of the type 3 serotonin receptor in the rat central nervous system. Mol Brain Res 36:251–260

    Article  CAS  PubMed  Google Scholar 

  • Moser MB, Trommald M, Anderson P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci USA 91:12673–12675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150

    Article  CAS  PubMed  Google Scholar 

  • Nabkasorn C, Miyai N, Sootmongkol A et al (2006) Effects of physical exercise on depression, neuroendocrine stress hormones and physiological fitness in adolescent females with depressive symptoms. Eur J Public Health 16:179–184

    Article  PubMed  Google Scholar 

  • Naka F, Narita N, Okado N, Narita M (2005) Modification of AMPA receptor properties following environmental enrichment. Brain Dev 27:275–278

    Article  PubMed  Google Scholar 

  • Neeper SA, Gomez-Pinilla F, Choi J, Cotman C (1995) Exercise and brain neurotrophins. Nature 373:109

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Levis H, Murphy M (2004) Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins. Neurobiol Learn Mem 81:200–210

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N (1995) The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81:769–780

    Article  CAS  PubMed  Google Scholar 

  • Oleskevich S, Descarries L (1990) Quantified distribution of the serotonin innervation in adult rat hippocampus. Neuroscience 34:19–33

    Article  CAS  PubMed  Google Scholar 

  • Orsini CA, Maren S (2012) Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev 36:1773–1802

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsons RG, Ressler KJ (2013) Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci 16:146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poncelet M, Perio A, Simiand J, Gout G, Soubrie P, Fur GL (1995) Antidepressant-like effects of SR 57227A, a 5-HT3 receptor agonist, in rodents. J Neural Transm Gen Sect 102:83–90

    Article  CAS  PubMed  Google Scholar 

  • Puig MV, Santana N, Celada P, Mengod G, Artigas F (2004) In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb Cortex 14:1365–1375

    Article  PubMed  Google Scholar 

  • Puthanveettil SV, Monje FJ, Miniaci MC et al (2008) A new component in synaptic plasticity: upregulation of kinesin in the neurons of the gill-withdrawal reflex. Cell 135:960–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ (2000a) Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-kockout mice. Nat Neurosci 3:238–244

    Article  CAS  PubMed  Google Scholar 

  • Rampon C, Jiang CH, Dong H et al (2000b) Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci USA 97:12880–12884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ropert N, Guy N (1991) Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. J Physiol 441:121–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi C, Angelucci A, Costantin L et al (2006) Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24:1850–1856

    Article  PubMed  Google Scholar 

  • Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115

    Article  CAS  PubMed  Google Scholar 

  • Sahay A, Scobie KN, Hill AS et al (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandock BJ, Sandock VA (2007) Posttraumatic stress disorder and acute stress disorder. Kaplan & Sandock’s synopsis of psychiatry: behavioral sciences/clinical psychiatry, 10th edn. Lippincott Williams & Wilkins, Philadelphia, pp 612–622

    Google Scholar 

  • Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  CAS  PubMed  Google Scholar 

  • Schloesser RJ, Lehmann M, Martinowich K, Manji HK, Herkenham M (2010) Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry 15:1152–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187

    Article  CAS  PubMed  Google Scholar 

  • Stäubli U, Xu FB (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 15:2445–2452

    PubMed  Google Scholar 

  • Strawbridge WJ, Deleger S, Roberts RE, Kaplan GA (2002) Physical activity reduces the risk of subsequent depression for older adults. Am J Epidemiol 156:328–334

    Article  PubMed  Google Scholar 

  • Suzuki S, Kiyosue K, Hazama S et al (2007) Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development. J Neurosci 27:6417–6427

    Article  CAS  PubMed  Google Scholar 

  • Sztainberg Y, Chen A (2010) An environmental enrichment model for mice. Nat Protoc 5:1535–1539

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Niwa S, Dong M et al (2016) The molecular motor KIF1A transports the trkA neurotrophin receptor and is essential for sensory neuron survival and function. Neuron 90:1215–1229

    Article  CAS  PubMed  Google Scholar 

  • Tang YP, Wang H, Feng R, Kyin M, Tsien JZ (2001) Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 41:779–790

    Article  CAS  PubMed  Google Scholar 

  • Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci USA 90:1430–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor 1 mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634

    CAS  PubMed  Google Scholar 

  • Turner TJ, Mokler DJ, Luebke JI (2004) Calcium influx through presynaptic 5-HT3 receptors facilitates GABA release in the hippocampus: in vitro slice and synaptosome studies. Neuroscience 129:703–718

    Article  CAS  PubMed  Google Scholar 

  • van Praag H (2009) Exercise and the brain: something to chew on. Trends Neurosci 32:283–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999a) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999b) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431

    Article  PubMed  PubMed Central  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590

    Article  PubMed  Google Scholar 

  • von Engelhardt J, Khrulev S, Eliava M, Wahlster S, Monyer H (2011) 5-HT3A receptor-bearing white matter interstitial GABAergic interneurons are functionally integrated into cortical and subcortical networks. J Neurosci 31:16844–16854

    Article  CAS  Google Scholar 

  • Wang JW, David DJ, Monckton JE, Battaglia F, Hen R (2008) Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 28:1374–1384

    Article  CAS  PubMed  Google Scholar 

  • Wilson WM, Marsden CA (1996) In vivo measurement of extracellular serotonin in the ventral hippocampus during treadmill running. Behav Pharmacol 7:101–104

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Takei Y, Kido MA, Hirokawa N (2011) Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels. Neuron 70:310–325

    Article  CAS  PubMed  Google Scholar 

  • Yonekawa Y, Harada A, Okada Y et al (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol 141:431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young D, Lawlor PA, Leone P, Dragunow M, During MJ (1999) Environmental enrichment inhibits spontaneous apoptosis, prevents seizure and is neuroprotective. Nat Med 5:448–453

    Article  CAS  PubMed  Google Scholar 

  • Zeitz KP, Guy N, Malmberg AB et al (2002) The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci 22:1010–1019

    CAS  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful to Prof. Nobutaka Hirokawa (The University of Tokyo) and Prof. Shoichi Shimada (Osaka University) for their support and mentorship. This work was partly supported by grants from the Japan Society for the Promotion of Science KAKENHI (Nos. 26860924 and 16K19764), the Uehara Memorial Foundation, the Japan Prize Foundation, Brain Science Foundation, the Sakamoto Research Foundation of Psychiatric Diseases, Takeda Science Foundation, the Ichiro Kanehara Foundation, Kanae Foundation, Suzuken Memorial Foundation, Meiji Yasuda Life Foundation, the Nakatomi Foundation, the Osaka Medical Research Foundation for Intractable Diseases, the Mochida Memorial Foundation for Medical and Pharmaceutical Research, Senri Life Science Foundation, and the Nakajima Foundation. The author received the Encouragement Award from the Japanese Association of Anatomist for fiscal year 2015, and gave a presentation at the 121th Annual Meeting in Fukushima, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kondo.

Ethics declarations

Conflict of interest

The author declares there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, M. Molecular mechanisms of experience-dependent structural and functional plasticity in the brain. Anat Sci Int 92, 1–17 (2017). https://doi.org/10.1007/s12565-016-0358-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0358-6

Keywords

Navigation