Skip to main content
Log in

Acrosome markers of human sperm

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Molecular biomarkers that can assess sperm acrosome status are very useful for evaluating sperm quality in the field of assisted reproductive technology. In this review, we introduce and discuss the localization and function of acrosomal proteins that have been well studied. Journal databases were searched using keywords, including “human acrosome”, “localization”, “fertilization-related protein”, “acrosomal membrane”, “acrosomal matrix”, “acrosome reaction”, “knockout mouse”, and “acrosome marker”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adekunle AO, Arboleda CE, Zervos PH, Gerton GL, Teuscher C (1987) Purification and initial characterization of guinea pig testicular acrosin. Biol Reprod 37:201–210

    Article  PubMed  CAS  Google Scholar 

  • Adham IM, Nayernia K, Engel W (1997) Spermatozoa lacking acrosin protein show delayed fertilization. Mol Reprod Dev 46:370–376

    Article  PubMed  CAS  Google Scholar 

  • Anakwe OO, Gerton GL (1990) Acrosome biogenesis begins during meiosis: evidence from the synthesis and distribution of an acrosomal glycoprotein, acrogranin, during guinea pig spermatogenesis. Biol Reprod 42:317–328

    Article  PubMed  CAS  Google Scholar 

  • Anderson DJ, Michaelson JS, Johnson PM (1989) Trophoblast/leukocyte-common antigen is expressed by human testicular germ cells and appears on the surface of acrosome-reacted sperm. Biol Reprod 41:285–293

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Kashiwabara S, Watanabe K et al (1989) Activation and maturation mechanisms of boar acrosin zymogen based on the deduced primary structure. J Biol Chem 264:11920–11927

    PubMed  CAS  Google Scholar 

  • Baba T, Azuma S, Kashiwabara S, Toyoda Y (1994) Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J Biol Chem 269:31845–31849

    PubMed  CAS  Google Scholar 

  • Baba D, Kashiwabara S, Honda A et al (2002) Mouse sperm lacking cell surface hyaluronidase PH-20 can pass through the layer of cumulus cells and fertilize the egg. J Biol Chem 277:30310–30314

    Article  PubMed  CAS  Google Scholar 

  • Bi M, Hickox JR, Winfrey VP, Olson GE, Hardy DM (2003) Processing, localization and binding activity of zonadhesin suggest a function in sperm adhesion to the zona pellucida during exocytosis of the acrosome. Biochem J 375:477–488

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bianchi E, Doe B, Goulding D, Wright GJ (2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–487

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bleil JD, Wassarman PM (1990) Identification of a ZP3-binding protein on acrosome-intact mouse sperm by photoaffinity crosslinking. Proc Natl Acad Sci USA 87:5563–5567

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brandon CI Jr, Srivastava PN, Heusner GL, Fayrer-Hosken RA (1997) Extraction and quantification of acrosin, beta-N-acetylglucosaminidase, and arylsulfatase-A from equine ejaculated spermatozoa. J Exp Zool 279:301–308

    Article  PubMed  CAS  Google Scholar 

  • Busso D, Cohen DJ, Hayashi M, Kasahara M, Cuasnicu PS (2005) Human testicular protein TPX1/CRISP-2: localization in spermatozoa, fate after capacitation and relevance for gamete interaction. Mol Hum Reprod 11:299–305

    Article  PubMed  CAS  Google Scholar 

  • Busso D, Goldweic NM, Hayashi M, Kasahara M, Cuasnicu PS (2007) Evidence for the involvement of testicular protein CRISP2 in mouse sperm–egg fusion. Biol Reprod 76:701–708

    Article  PubMed  CAS  Google Scholar 

  • Chalbi M, Barraud-Lange V, Ravaux B et al (2014) Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization. Development 141:3732–3739

    Article  PubMed  CAS  Google Scholar 

  • Cheng A, Le T, Palacios M et al (1994) sperm–egg recognition in the mouse: characterization of sp56, a sperm protein having specific affinity for ZP3. J Cell Biol 125:867–878

    Article  PubMed  CAS  Google Scholar 

  • Dörig RE, Marcil A, Chopra A, Richardson CD (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305

    Article  PubMed  Google Scholar 

  • Fénichel P, Dohr G, Grivaux C, Cervoni F, Donzeau M, Hsi BL (1990) Localization and characterization of the acrosomal antigen recognized by GB24 on human spermatozoa. Mol Reprod Dev 27:173–178

    Article  PubMed  Google Scholar 

  • Ferrer M, Xu W, Oko R (2012a) The composition, protein genesis and significance of the inner acrosomal membrane of eutherian sperm. Cell Tissue Res 349:733–748

    Article  PubMed  CAS  Google Scholar 

  • Ferrer M, Rodriguez H, Zara L, Yu Y, Xu W, Oko R (2012b) MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res 349:881–895

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Florman HM, Fissore RA (2014) Fertilization in mammals. In: Plant TM, Zeleznik A (eds) Knobil and Neill’s physiology of reproduction, vol 1, 4th edn. Acaemic Press, New York, pp 149–196

    Google Scholar 

  • Forsbach A, Heinlein UA (1998) Intratesticular distribution of cyritestin, a protein involved in gamete interaction. J Exp Biol 201:861–867

    PubMed  CAS  Google Scholar 

  • Foster JA, Klotz KL, Flickinger CJ et al (1994) Human SP-10: acrosomal distribution, processing, and fate after the acrosome reaction. Biol Reprod 51:1222–1231

    Article  PubMed  CAS  Google Scholar 

  • Foster JA, Friday BB, Maulit MT et al (1997) AM67, a secretory component of the guinea pig sperm acrosomal matrix, is related to mouse sperm protein sp56 and the complement component 4-binding proteins. J Biol Chem 272:12714–12722

    Article  PubMed  CAS  Google Scholar 

  • Freemerman AJ, Wright RM, Flickinger CJ, Herr JC (1993) Cloning and sequencing of baboon and cynomolgus monkey intra-acrosomal protein SP-10: homology with human SP-10 and a mouse sperm antigen (MSA-63). Mol Reprod Dev 34:140–148

    Article  PubMed  CAS  Google Scholar 

  • Fujihara Y, Murakami M, Inoue N et al (2010) Sperm equatorial segment protein 1, SPESP1, is required for fully fertile sperm in mouse. J Cell Sci 123:1531–1536

    Article  PubMed  CAS  Google Scholar 

  • Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M, Okabe M (2012) SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia. Development 139:3583–3589

    Article  PubMed  CAS  Google Scholar 

  • Fujihara Y, Okabe M, Ikawa M (2014) GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biol Reprod 90:1–6

    Article  CAS  Google Scholar 

  • Gao Z, Garbers DL (1998) Species diversity in the structure of zonadhesin, a sperm-specific membrane protein containing multiple cell adhesion molecule-like domains. J Biol Chem 273:3415–3421

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Harumi T, Garbers DL (1997) Chromosome localization of the mouse zonadhesin gene and the human zonadhesin gene (ZAN). Genomics 41:119–122

    Article  PubMed  CAS  Google Scholar 

  • Gibbs GM, Scanlon MJ, Swarbrick J et al (2006) The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2+ signaling. J Biol Chem 281:4156–4163

    Article  PubMed  CAS  Google Scholar 

  • Greenstone HL, Santoro F, Lusso P, Berger EA (2002) Human herpesvirus 6 and measles virus employ distinct CD46 domains for receptor function. J Biol Chem 277:39112–39118

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GS, Galileo DS, Reese K, Martin-Deleon PA (2008a) Investigating the role of murine epididymosomes and uterosomes in GPI-linked protein transfer to sperm using SPAM1 as a model. Mol Reprod Dev 75:1627–1636

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GS, Miller KA, Galileo DS, Martin-DeLeon PA (2008b) Murine SPAM1 is secreted by the estrous uterus and oviduct in a form that can bind to sperm during capacitation: acquisition enhances hyaluronic acid-binding ability and cumulus dispersal efficiency. Reproduction 135:293–301

    Article  PubMed  CAS  Google Scholar 

  • Grzmil P, Kim Y, Shamsadin R et al (2001) Human cyritestin genes (CYRN1 and CYRN2) are non-functional. Biochem J 357:551–556

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hamatani T, Tanabe K, Kamei K, Sakai N, Yamamoto Y, Yoshimura Y (2000) A monoclonal antibody to human SP-10 inhibits in vitro the binding of human sperm to hamster oolemma but not to human Zona pellucida. Biol Reprod 62:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Hao Z, Wolkowicz MJ, Shetty J et al (2002) SAMP32, a testis-specific, isoantigenic sperm acrosomal membrane-associated protein. Biol Reprod 66:735–744

    Article  PubMed  CAS  Google Scholar 

  • Hao J, Chen M, Ji S et al (2014) Equatorin is not essential for acrosome biogenesis but is required for the acrosome reaction. Biochem Biophys Res Commun 444:537–542

    Article  PubMed  CAS  Google Scholar 

  • Hardy DM, Garbers DL (1994) Species-specific binding of sperm proteins to the extracellular matrix (zona pellucida) of the egg. J Biol Chem 269:19000–19004

    PubMed  CAS  Google Scholar 

  • Hardy DM, Garbers DL (1995) A sperm membrane protein that binds in a species-specific manner to the egg extracellular matrix is homologous to von Willebrand factor. J Biol Chem 270:26025–26028

    Article  PubMed  CAS  Google Scholar 

  • Hardy DM, Wild GC, Tung KS (1987) Purification and initial characterization of proacrosins from guinea pig testes and epididymal spermatozoa. Biol Reprod 37:189–199

    Article  PubMed  CAS  Google Scholar 

  • Hardy DM, Oda MN, Friend DS, Huang TT Jr (1991) A mechanism for differential release of acrosomal enzymes during the acrosome reaction. Biochem J 275(Pt 3):759–766

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • He XB, Yan YC, Li YP, Koide SS (2003) Cloning of rat sp56, the homologue of mouse sperm ZP3 receptor-sp56. Cell Res 13:121–129

    Article  PubMed  CAS  Google Scholar 

  • Herlyn H, Zischler H (2008) The molecular evolution of sperm zonadhesin. Int J Dev Biol 52:781–790

    Article  PubMed  CAS  Google Scholar 

  • Herr JC, Flickinger CJ, Homyk M, Klotz K, John E (1990a) Biochemical and morphological characterization of the intra-acrosomal antigen SP-10 from human sperm. Biol Reprod 42:181–193

    Article  PubMed  CAS  Google Scholar 

  • Herr JC, Wright RM, John E, Foster J, Kays T, Flickinger CJ (1990b) Identification of human acrosomal antigen SP-10 in primates and pigs. Biol Reprod 42:377–382

    Article  PubMed  CAS  Google Scholar 

  • Herrero MB, Mandal A, Digilio LC, Coonrod SA, Maier B, Herr JC (2005) Mouse SLLP1, a sperm lysozyme-like protein involved in sperm–egg binding and fertilization. Dev Biol 284:126–142

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Siruntawineti J, Baba T (2002) Role of acrosomal matrix proteases in sperm–zona pellucida interactions. Hum Reprod Update 8:405–412

    Article  PubMed  CAS  Google Scholar 

  • Hsu YC, Perin MS (1995) Human neuronal pentraxin II (NPTX2): conservation, genomic structure, and chromosomal localization. Genomics 28:220–227

    Article  PubMed  CAS  Google Scholar 

  • Inoue N, Ikawa M, Nakanishi T et al (2003) Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Mol Cell Biol 23:2614–2622

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    Article  PubMed  CAS  Google Scholar 

  • Inoue N, Hamada D, Kamikubo H et al (2013) Molecular dissection of IZUMO1, a sperm protein essential for sperm–egg fusion. Development 140:3221–3229

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Yamatoya K, Yoshida K et al (2010) Appearance of an oocyte activation-related substance during spermatogenesis in mouse and human. Hum Reprod 25:2734–2744

    Article  PubMed  CAS  Google Scholar 

  • Ito C, Yamatoya K, Yoshida K et al (2013) Integration of the mouse sperm fertilization-related protein equatorin into the acrosome during spermatogenesis as revealed by super-resolution and immunoelectron microscopy. Cell Tissue Res 352:739–750

    Article  PubMed  CAS  Google Scholar 

  • Ito C, Yamatoya K, Toshimori K (2015) Analysis of the complexity of the sperm acrosomal membrane by super-resolution stimulated emission depletion microscopy compared with transmission electron microscopy. Microscopy 64:279–287

    Article  PubMed  Google Scholar 

  • Jin M, Fujiwara E, Kakiuchi Y et al (2011) Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci USA 108:4892–4896

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kawano N, Kang W, Yamashita M et al (2010) Mice lacking two sperm serine proteases, ACR and PRSS21, are subfertile, but the mutant sperm are infertile in vitro. Biol Reprod 83:359–369

    Article  PubMed  CAS  Google Scholar 

  • Kemper C, Chan AC, Green JM et al (2003) Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421:388–392

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Tres LL (2004) The acrosome–acroplaxome–manchette complex and the shaping of the spermatid head. Arch Histol Cytol 67:271–284

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Gerton GL (2003) Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm. Dev Biol 264:141–152

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Cha MC, Gerton GL (2001) Mouse sperm protein sp56 is a component of the acrosomal matrix. Biol Reprod 64:36–43

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Nishimura H, Iwase S, Yamagata K, Kashiwabara S, Baba T (2004) Synthesis, processing, and subcellular localization of mouse ADAM3 during spermatogenesis and epididymal sperm transport. J Reprod Dev 50:571–578

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Foster JA, Kvasnicka KW, Gerton GL (2011) Transitional states of acrosomal exocytosis and proteolytic processing of the acrosomal matrix in guinea pig sperm. Mol Reprod Dev 78:930–941

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Klemm U, Muller-Esterl W, Engel W (1991) Acrosin, the peculiar sperm-specific serine protease. Hum Genet 87:635–641

    Article  PubMed  CAS  Google Scholar 

  • Kurth BE, Klotz K, Flickinger CJ, Herr JC (1991) Localization of sperm antigen SP-10 during the six stages of the cycle of the seminiferous epithelium in man. Biol Reprod 44:814–821

    Article  PubMed  CAS  Google Scholar 

  • Lea IA, Sivashanmugam P, O’Rand MG (2001) Zonadhesin: characterization, localization, and zona pellucida binding. Biol Reprod 65:1691–1700

    Article  PubMed  CAS  Google Scholar 

  • Lin YN, Roy A, Yan W, Burns KH, Matzuk MM (2007) Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol 27:6794–6805

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Linder B, Bammer S, Heinlein UA (1995) Delayed translation and posttranslational processing of cyritestin, an integral transmembrane protein of the mouse acrosome. Exp Cell Res 221:66–72

    Article  PubMed  CAS  Google Scholar 

  • Liu MS, Aebersold R, Fann CH, Lee CY (1992) Molecular and developmental studies of a sperm acrosome antigen recognized by HS-63 monoclonal antibody. Biol Reprod 46:937–948

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Sakashita M, Ohba Y, Nakanishi Y (1998) Molecular cloning of the rat Tpx-1 responsible for the interaction between spermatogenic and sertoli cells. Biochem Biophys Res Commun 248:140–146

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Nishida J, Nakanishi Y (1999) Expression pattern, subcellular localization and structure–function relationship of rat Tpx-1, a spermatogenic cell adhesion molecule responsible for association with sertoli cells. Dev Growth Differ 41:715–722

    Article  PubMed  CAS  Google Scholar 

  • Manandhar G, Toshimori K (2001) Exposure of sperm head equatorin after acrosome reaction and its fate after fertilization in mice. Biol Reprod 65:1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Mandal A, Klotz KL, Shetty J et al (2003) SLLP1, a unique, intra-acrosomal, non-bacteriolytic, c lysozyme-like protein of human spermatozoa. Biol Reprod 68:1525–1537

    Article  PubMed  CAS  Google Scholar 

  • Marie JC, Astier AL, Rivailler P, Rabourdin-Combe C, Wild TF, Horvat B (2002) Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 3:659–666

    PubMed  CAS  Google Scholar 

  • Mizuno M, Harris CL, Johnson PM, Morgan BP (2004) Rat membrane cofactor protein (MCP; CD46) is expressed only in the acrosome of developing and mature spermatozoa and mediates binding to immobilized activated C3. Biol Reprod 71:1374–1383

    Article  PubMed  CAS  Google Scholar 

  • Mizuno M, Harris CL, Suzuki N, Matsuo S, Morgan BP (2005) Expression of CD46 in developing rat spermatozoa: ultrastructural localization and utility as a marker of the various stages of the seminiferous tubuli. Biol Reprod 72:908–915

    Article  PubMed  CAS  Google Scholar 

  • Mori E, Baba T, Iwamatsu A, Mori T (1993) Purification and characterization of a 38-kDa protein, sp38, with zona pellucida-binding property from porcine epididymal sperm. Biochem Biophys Res Commun 196:196–202

    Article  PubMed  CAS  Google Scholar 

  • Mori E, Kashiwabara S, Baba T, Inagaki Y, Mori T (1995) Amino acid sequences of porcine Sp38 and proacrosin required for binding to the zona pellucida. Dev Biol 168:575–583

    Article  PubMed  CAS  Google Scholar 

  • Morin G, Lalancette C, Sullivan R, Leclerc P (2005) Identification of the bull sperm p80 protein as a PH-20 ortholog and its modification during the epididymal transit. Mol Reprod Dev 71:523–534

    Article  PubMed  CAS  Google Scholar 

  • Morin G, Sullivan R, Laflamme I, Robert C, Leclerc P (2010) SPAM1 isoforms from two tissue origins are differentially localized within ejaculated bull sperm membranes and have different roles during fertilization. Biol Reprod 82:271–281

    Article  PubMed  CAS  Google Scholar 

  • Muro Y, Buffone MG, Okabe M, Gerton GL (2012) Function of the acrosomal matrix: zona pellucida 3 receptor (ZP3R/sp56) is not essential for mouse fertilization. Biol Reprod 86:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi T, Ikawa M, Yamada S et al (1999) Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett 449:277–283

    Article  PubMed  CAS  Google Scholar 

  • Nayernia K, Adham IM, Shamsadin R, Müller C, Sancken U, Engel W (2002) Proacrosin-deficient mice and zona pellucida modifications in an experimental model of multifactorial infertility. Mol Hum Reprod 8:434–440

    Article  PubMed  CAS  Google Scholar 

  • Nimlamool W, Bean BS, Lowe-Krentz LJ (2013) Human sperm CRISP2 is released from the acrosome during the acrosome reaction and re-associates at the equatorial segment. Mol Reprod Dev 80:488–502

    PubMed  CAS  Google Scholar 

  • Nishimura H, Cho C, Branciforte DR, Myles DG, Primakoff P (2001) Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol 233:204–213

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Gupta S, Myles DG, Primakoff P (2011) Characterization of mouse sperm TMEM190, a small transmembrane protein with the trefoil domain: evidence for co-localization with IZUMO1 and complex formation with other sperm proteins. Reproduction 141:437–451

    Article  PubMed  CAS  Google Scholar 

  • Noland TD, Friday BB, Maulit MT, Gerton GL (1994) The sperm acrosomal matrix contains a novel member of the pentaxin family of calcium-dependent binding proteins. J Biol Chem 269:32607–32614

    PubMed  CAS  Google Scholar 

  • O’Bryan MK, Loveland KL, Herszfeld D, McFarlane JR, Hearn MT, de Kretser DM (1998) Identification of a rat testis-specific gene encoding a potential rat outer dense fibre protein. Mol Reprod Dev 50:313–322

    Article  PubMed  Google Scholar 

  • O’Bryan MK, Sebire K, Meinhardt A et al (2001) Tpx-1 is a component of the outer dense fibers and acrosome of rat spermatozoa. Mol Reprod Dev 58:116–125

    Article  PubMed  Google Scholar 

  • Oh-Oka T, Tanii I, Wakayama T, Yoshinaga K, Watanabe K, Toshimori K (2001) Partial characterization of an intra-acrosomal protein, human acrin1 (MN7). J Androl 22:17–24

    PubMed  CAS  Google Scholar 

  • Okabe M, Yagasaki M, Oda H, Matzno S, Kohama Y, Mimura T (1988) Effect of a monoclonal anti-mouse sperm antibody (OBF13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J Reprod Immunol 13:211–219

    Article  PubMed  CAS  Google Scholar 

  • Okada N, Liszewski MK, Atkinson JP, Caparon M (1995) Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc Natl Acad Sci USA 92:2489–2493

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olson GE, Winfrey VP, Bi M, Hardy DM, NagDas SK (2004) Zonadhesin assembly into the hamster sperm acrosomal matrix occurs by distinct targeting strategies during spermiogenesis and maturation in the epididymis. Biol Reprod 71:1128–1134

    Article  PubMed  CAS  Google Scholar 

  • Overstreet JW, Lin Y, Yudin AI et al (1995) Location of the PH-20 protein on acrosome-intact and acrosome-reacted spermatozoa of cynomolgus macaques. Biol Reprod 52:105–114

    Article  PubMed  CAS  Google Scholar 

  • Phelps BM, Primakoff P, Koppel DE, Low MG, Myles DG (1988) Restricted lateral diffusion of PH-20, a PI-anchored sperm membrane protein. Science 240:1780–1782

    Article  PubMed  CAS  Google Scholar 

  • Polakoski KL, Parrish RF (1977) Boar proacrosin. Purification and preliminary activation studies of proacrosin isolated from ejaculated boar sperm. J Biol Chem 252:1888–1894

    PubMed  CAS  Google Scholar 

  • Post TW, Liszewski MK, Adams EM, Tedja I, Miller EA, Atkinson JP (1991) Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype. J Exp Med 174:93–102

    Article  PubMed  CAS  Google Scholar 

  • Primakoff P, Hyatt H, Myles DG (1985) A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida. J Cell Biol 101:2239–2244

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos J, Terada Y, Schatten G (2002) VAMP/synaptobrevin as an acrosomal marker for human sperm. Fertil Steril 77:159–161

    Article  PubMed  Google Scholar 

  • Reddi PP, Naaby-Hansen S, Aguolnik I et al (1995) Complementary deoxyribonucleic acid cloning and characterization of mSP-10: the mouse homologue of human acrosomal protein SP-10. Biol Reprod 53:873–881

    Article  PubMed  CAS  Google Scholar 

  • Reddi PP, Shore AN, Acharya KK, Herr JC (2002) Transcriptional regulation of spermiogenesis: insights from the study of the gene encoding the acrosomal protein SP-10. J Reprod Immunol 53:25–36

    Article  PubMed  CAS  Google Scholar 

  • Reid MS, Blobel CP (1994) Apexin, an acrosomal pentaxin. J Biol Chem 269:32615–32620

    PubMed  CAS  Google Scholar 

  • Russell LD, Ettlin RA, Sinha-Hikim A, Clegg E (1990) Hitological and histopathological evaluation of the testis. Cache River Press, USA

    Google Scholar 

  • Sabeur K, Cherr GN, Yudin AI, Primakoff P, Li MW, Overstreet JW (1997) The PH-20 protein in human spermatozoa. J Androl 18:151–158

    PubMed  CAS  Google Scholar 

  • Sachdev M, Mandal A, Mulders S et al (2012) Oocyte specific oolemmal SAS1B involved in sperm binding through intra-acrosomal SLLP1 during fertilization. Dev Biol 363:40–51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Satouh Y, Inoue N, Ikawa M, Okabe M (2012) Visualization of the moment of mouse sperm–egg fusion and dynamic localization of IZUMO1. J Cell Sci 125:4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Saxena DK, Tanii I, Yoshinaga K, Toshimori K (1999) Role of intra-acrosomal antigenic molecules acrin 1 (MN7) and acrin 2 (MC41) in penetration of the zona pellucida in fertilization in mice. J Reprod Fertil 117:17–25

    Article  PubMed  CAS  Google Scholar 

  • Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W (1999) Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod 61:1445–1451

    Article  PubMed  CAS  Google Scholar 

  • Shetty J, Wolkowicz MJ, Digilio LC et al (2003) SAMP14, a novel, acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm–egg interaction. J Biol Chem 278:30506–30515

    Article  PubMed  CAS  Google Scholar 

  • Siegel MS, Bechtold DS, Kopta CI, Polakoski KL (1986) The rapid purification and partial characterization of human sperm proacrosin using an automated fast protein liquid chromatography (FPLC) system. Biochim Biophys Acta 883:567–573

    Article  PubMed  CAS  Google Scholar 

  • Sosnik J, Miranda PV, Spiridonov NA et al (2009) Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci 122:2741–2749

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suryavathi V, Panneerdoss S, Wolkowicz MJ et al (2015) Dynamic changes in equatorial segment protein 1 (SPESP1) glycosylation during mouse spermiogenesis. Biol Reprod 92:1–16

    Article  CAS  Google Scholar 

  • Tanii I, Araki S, Toshimori K (1994) Intra-acrosomal organization of a 90-kilodalton antigen during spermiogenesis in the rat. Cell Tissue Res 277:61–67

    Article  PubMed  CAS  Google Scholar 

  • Tardif S, Cormier N (2011) Role of zonadhesin during sperm–egg interaction: a species-specific acrosomal molecule with multiple functions. Mol Hum Reprod 17:661–668

    Article  PubMed  CAS  Google Scholar 

  • Tardif S, Wilson MD, Wagner R et al (2010) Zonadhesin is essential for species specificity of sperm adhesion to the egg zona pellucida. J Biol Chem 285:24863–24870

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thaler CD, Cardullo RA (1995) Biochemical characterization of a glycosylphosphatidylinositol-linked hyaluronidase on mouse sperm. Biochemistry 34:7788–7795

    Article  PubMed  CAS  Google Scholar 

  • Tokuhiro K, Ikawa M, Benham AM, Okabe M (2012) Protein disulfide isomerase homolog PDILT is required for quality control of sperm membrane protein ADAM3 and male fertility. Proc Natl Acad Sci USA 109:3850–3855

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Toshimori K (2009) Dynamics of the mammalian sperm head: modifications and maturation events from spermatogenesis to egg activation. Adv Anat Embryol Cell Biol 204:5–94

    PubMed  Google Scholar 

  • Toshimori K (2011) Dynamics of the mammalian sperm membrane modification leading to fertilization: a cytological study. J Electron Microsc (Tokyo) 60[Suppl 1]:S31–S42

    Article  CAS  Google Scholar 

  • Toshimori K, Eddy EM (2014) The Spermatozoon. In: Plant TM, Zeleznik A (eds) Knobil and Neill’s physiology of reproduction, vol 1, 4th edn. Acaemic Press, New York, pp 99–148

    Google Scholar 

  • Toshimori K, Ito C (2003) Formation and organization of the mammalian sperm head. Arch Histol Cytol 66:383–396

    Article  PubMed  Google Scholar 

  • Toshimori K, Tanii I, Araki S, Oura C (1992) Characterization of the antigen recognized by a monoclonal antibody MN9: unique transport pathway to the equatorial segment of sperm head during spermiogenesis. Cell Tissue Res 270:459–468

    Article  PubMed  CAS  Google Scholar 

  • Toshimori K, Saxena DK, Tanii I, Yoshinaga K (1998) An MN9 antigenic molecule, equatorin, is required for successful sperm–oocyte fusion in mice. Biol Reprod 59:22–29

    Article  PubMed  CAS  Google Scholar 

  • Tulsiani DR, Abou-Haila A, Loeser CR, Pereira BM (1998) The biological and functional significance of the sperm acrosome and acrosomal enzymes in mammalian fertilization. Exp Cell Res 240:151–164

    Article  PubMed  CAS  Google Scholar 

  • Wassarman PM (2009) Mammalian fertilization: the strange case of sperm protein 56. BioEssays 31:153–158

    Article  PubMed  CAS  Google Scholar 

  • Westbrook-Case VA, Winfrey VP, Olson GE (1994) A domain-specific 50-kilodalton structural protein of the acrosomal matrix is processed and released during the acrosome reaction in the guinea pig. Biol Reprod 51:1–13

    Article  PubMed  CAS  Google Scholar 

  • Westbrook-Case VA, Winfrey VP, Olson GE (1995) Sorting of the domain-specific acrosomal matrix protein AM50 during spermiogenesis in the guinea pig. Dev Biol 167:338–349

    Article  PubMed  CAS  Google Scholar 

  • Wolkowicz MJ, Shetty J, Westbrook A et al (2003) Equatorial segment protein defines a discrete acrosomal subcompartment persisting throughout acrosomal biogenesis. Biol Reprod 69:735–745

    Article  PubMed  CAS  Google Scholar 

  • Wolkowicz MJ, Digilio L, Klotz K, Flickinger CJ, Herr JC (2008) Equatorial segment protein (ESP) is a human alloantigen involved in sperm–egg binding and fusion. J Androl 29:272–282

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wright RM, Suri AK, Kornreich B, Flickinger CJ, Herr JC (1993) Cloning and characterization of the gene coding for the human acrosomal protein SP-10. Biol Reprod 49:316–325

    Article  PubMed  CAS  Google Scholar 

  • Yamagata K, Murayama K, Okabe M et al (1998) Acrosin accelerates the dispersal of sperm acrosomal proteins during acrosome reaction. J Biol Chem 273:10470–10474

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi R, Muro Y, Isotani A et al (2009) Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol Reprod 81:142–146

    Article  PubMed  CAS  Google Scholar 

  • Yamatoya K, Yoshida K, Ito C et al (2009) Equatorin: identification and characterization of the epitope of the MN9 antibody in the mouse. Biol Reprod 81:889–897

    Article  PubMed  CAS  Google Scholar 

  • Yanagimachi R (1994) Fertilization. In: Knobil E, Neill JD (eds) The physiology of reproduction, vol 1. Raven Press, New York, pp 189–317

    Google Scholar 

  • Yatsenko AN, O’Neil DS, Roy A et al (2012) Association of mutations in the zona pellucida binding protein 1 (ZPBP1) gene with abnormal sperm head morphology in infertile men. Mol Hum Reprod 18:14–21

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yoshida K, Ito C, Yamatoya K et al (2010) A model of the acrosome reaction progression via the acrosomal membrane-anchored protein equatorin. Reproduction 139:533–544

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Tanii I, Saxena DK, Toshimori K (1998) Immunocytochemical alterations in the intra-acrosomal antigen MN7 during epididymal maturation of guinea pig spermatozoa. Cell Tissue Res 292:427–433

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Tanii I, Oh-Oka T, Toshimori K (2000) Transport and rearrangement of the intra-acrosomal protein acrin1 (MN7) during spermiogenesis in the guinea pig testis. Anat Rec 259:131–140

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Saxena DK, Oh-oka T, Tanii I, Toshimori K (2001) Inhibition of mouse fertilization in vivo by intra-oviductal injection of an anti-equatorin monoclonal antibody. Reproduction 122:649–655

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Xu W, Yi YJ, Sutovsky P, Oko R (2006) The extracellular protein coat of the inner acrosomal membrane is involved in zona pellucida binding and penetration during fertilization: characterization of its most prominent polypeptide (IAM38). Dev Biol 290:32–43

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Vanhorne J, Oko R (2009) The origin and assembly of a zona pellucida binding protein, IAM38, during spermiogenesis. Microsc Res Tech 72:558–565

    Article  PubMed  CAS  Google Scholar 

  • Yuan R, Primakoff P, Myles DG (1997) A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm–egg plasma membrane adhesion and fusion. J Cell Biol 137:105–112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zaneveld LJ, De Jonge CJ (1991) Mammalian sperm acrosomal enzymes and the acrosome reaction. In: Dunbar B, O’Rand M (eds) A comparative overview of mammalian fertilization. Plenum, New York

    Google Scholar 

  • Zhang H, Martin-DeLeon PA (2003) Mouse Spam1 (PH-20) is a multifunctional protein: evidence for its expression in the female reproductive tract. Biol Reprod 69:446–454

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Morales CR, Badran H, El-Alfy M, Martin-DeLeon PA (2004) Spam1 (PH-20) expression in the extratesticular duct and accessory organs of the mouse: a possible role in sperm fluid reabsorption. Biol Reprod 71:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Kang W, Baba T (2012) Functional characterization of double-knockout mouse sperm lacking SPAM1 and ACR or SPAM1 and PRSS21 in fertilization. J Reprod Dev 58:330–337

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank T. Mutoh, K Ushikoshi, A Tajima, and T Kanamori for their excellent technical assistance. This work is supported by a Grant from the Japan Society for the Promotion of Science in part to C. I. (15K10638), K. T. (25293041) and CREST, Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chizuru Ito.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, C., Toshimori, K. Acrosome markers of human sperm. Anat Sci Int 91, 128–142 (2016). https://doi.org/10.1007/s12565-015-0323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-015-0323-9

Keywords

Navigation