Skip to main content
Log in

Functional organization of the local circuit in the inferior colliculus

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The inferior colliculus (IC) is the first integration center of the auditory system. After the transformation of sound to neural signals in the cochlea, the signals are analyzed by brainstem auditory nuclei that, in turn, transmit this information to the IC. However, the neural circuitry that underlies this integration is unclear. This review consists of two parts: one is about the cell type which is likely to integrate sound information, and the other is about a technique which is useful for studying local circuitry. Large GABAergic (LG) neurons receive dense excitatory axosomatic terminals that originate from the lower brainstem auditory nuclei as well as local IC neurons. Dozens of axons coming from both local and lower brainstem neurons converge on a single LG soma. Excitatory neurons in IC can innervate many nearby LG somata in the same fibrodendritic lamina. The combination of local and ascending inputs is well suited for auditory integration. LG neurons are one of the main sources of inhibition in the medial geniculate body (MGB). LG neurons and the tectothalamic inhibitory system are present in a wide variety of mammalian species. This suggests that the circuitry of excitatory and inhibitory tectothalamic projections may have evolved earlier than GABAergic interneurons in the MGB, which are found in fewer species. Cellular-level functional imaging provides both morphological and functional information about local circuitry. In the last part of this review, we describe an in vivo calcium imaging study that sheds light on the functional organization of the IC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams JC (1979) Ascending projections to the inferior colliculus. J Comp Neurol 183(3):519–538

    Article  CAS  PubMed  Google Scholar 

  • Altschuler RA, Tong L, Holt AG, Oliver DL (2008) Immunolocalization of vesicular glutamate transporters 1 and 2 in the rat inferior colliculus. Neuroscience 154(1):226–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arnault P, Roger M (1990) Ventral temporal cortex in the rat: connections of secondary auditory areas Te2 and Te3. J Comp Neurol 302(1):110–123

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Shamma SA, Kanold PO (2010) Dichotomy of functional organization in the mouse auditory cortex. Nat Neurosci 13(3):361–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81(5):1999–2016

    CAS  PubMed  Google Scholar 

  • Cant NB (1982) Identification of cell types in the anteroventral cochlear nucleus that project to the inferior colliculus. Neurosci Lett 32(3):241–246

    Article  CAS  PubMed  Google Scholar 

  • Cant NB, Benson CG (2006) Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 495(5):511–528

    Article  PubMed Central  PubMed  Google Scholar 

  • Casseday JH, Ehrlich D, Covey E (1994) Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264(5160):847–850

    Article  CAS  PubMed  Google Scholar 

  • Casseday JH, Fremouw T, Covey E (2002) The inferior colliculus: a hub for the central auditory system. In: Oertel D, Fay RR, Popper AN (eds) Integrative functions in the mammalian auditory pathway. Springer, New York, pp 238–318

    Chapter  Google Scholar 

  • Chernock ML, Larue DT, Winer JA (2004) A periodic network of neurochemical modules in the inferior colliculus. Hear Res 188(1–2):12–20

    Article  CAS  PubMed  Google Scholar 

  • Covey E, Casseday JH (1991) The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound. J Neurosci 11(11):3456–3470

    CAS  PubMed  Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka

    Google Scholar 

  • Faye-Lund H, Osen KK (1985) Anatomy of the inferior colliculus in rat. Anat Embryol (Berl) 171(1):1–20

    Article  CAS  Google Scholar 

  • Furuta T, Tomioka R, Taki K, Nakamura K, Tamamaki N, Kaneko T (2001) In vivo transduction of central neurons using recombinant Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem 49(12):1497–1508

    Article  CAS  PubMed  Google Scholar 

  • Geis HR, Borst JG (2013) Large GABAergic neurons form a distinct subclass within the mouse dorsal cortex of the inferior colliculus with respect to intrinsic properties, synaptic inputs, sound responses, and projections. J Comp Neurol 521(1):189–202

    Article  PubMed  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90(3):983–1012

    Article  CAS  PubMed  Google Scholar 

  • Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304(1):103–122

    Article  CAS  PubMed  Google Scholar 

  • Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T, Nakamura KC, Fujiyama F, Kaneko T (2010) Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol 518(5):668–686

    Article  CAS  PubMed  Google Scholar 

  • Holderith N, Lorincz A, Katona G, Rozsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15(7):988–997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Itaya SK, Van Hoesen GW (1982) Retinal innervation of the inferior colliculus in rat and monkey. Brain Res 233(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Oliver DL (2010) Origins of glutamatergic terminals in the inferior colliculus identified by retrograde transport and expression of VGLUT1 and VGLUT2 genes. Front Neuroanat 4:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Ito T, Oliver DL (2012) The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus. Front Neural Circuits 6:48

    Article  PubMed Central  PubMed  Google Scholar 

  • Ito T, Oliver DL (2014) Local and commissural IC neurons make axosomatic inputs on large GABAergic tectothalamic neurons. J Comp Neurol 522(15):3539–3554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito T, Hioki H, Nakamura K, Tanaka Y, Nakade H, Kaneko T, Iino S, Nojyo Y (2007) Gamma-aminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion. J Comp Neurol 502(1):113–125

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Bishop DC, Oliver DL (2009) Two classes of GABAergic neurons in the inferior colliculus. J Neurosci 29(44):13860–13869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito T, Bishop DC, Oliver DL (2011) Expression of glutamate and inhibitory amino acid vesicular transporters in the rodent auditory brainstem. J Comp Neurol 519(2):316–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito T, Hirose J, Murase K, Ikeda H (2014) Determining auditory-evoked activities from multiple cells in layer 1 of the dorsal cortex of the inferior colliculus of mice by in vivo calcium imaging. Brain Res 1590:45–55

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Hioki H, Sohn J, Okamoto S, Kaneko T, Iino S, Oliver DL (2015) Convergence of lemniscal and local excitatory inputs on large GABAergic tectothalamic neurons. J Comp Neurol 523(15):2277–2296

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2007) The medial geniculate complex. The thalamus, 2nd edn. Cambridge University, New York, pp 875–923

    Google Scholar 

  • Joris PX, Smith PH (2008) The volley theory and the spherical cell puzzle. Neuroscience 154(1):65–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimura A, Donishi T, Okamoto K, Tamai Y (2005) Topography of projections from the primary and non-primary auditory cortical areas to the medial geniculate body and thalamic reticular nucleus in the rat. Neuroscience 135(4):1325–1342

    Article  CAS  PubMed  Google Scholar 

  • Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y (2012) Auditory thalamic reticular nucleus of the rat: anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 520(7):1457–1480

    Article  PubMed  Google Scholar 

  • Kuo RI, Wu GK (2012) The generation of direction selectivity in the auditory system. Neuron 73(5):1016–1027

    Article  CAS  PubMed  Google Scholar 

  • Kuwada S, Batra R, Yin TC, Oliver DL, Haberly LB, Stanford TR (1997) Intracellular recordings in response to monaural and binaural stimulation of neurons in the inferior colliculus of the cat. J Neurosci 17(19):7565–7581

    CAS  PubMed  Google Scholar 

  • Lee CC, Sherman SM (2010) Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proc Natl Acad Sci U S A 107(1):372–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linke R (1999) Differential projection patterns of superior and inferior collicular neurons onto posterior paralaminar nuclei of the thalamus surrounding the medial geniculate body in the rat. Eur J Neurosci 11(1):187–203

    Article  CAS  PubMed  Google Scholar 

  • Loftus WC, Bishop DC, Oliver DL (2010) Differential patterns of inputs create functional zones in central nucleus of inferior colliculus. J Neurosci 30(40):13396–13408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malmierca MS, Blackstad TW, Osen KK, Karagulle T, Molowny RL (1993) The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J Comp Neurol 333(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2):444–453

    Article  CAS  PubMed  Google Scholar 

  • Mellott JG, Foster NL, Nakamoto KT, Motts SD, Schofield BR (2014) Distribution of GABAergic cells in the inferior colliculus that project to the thalamus. Front Neuroanat 8:17

    PubMed Central  PubMed  Google Scholar 

  • Merchan M, Aguilar LA, Lopez-Poveda EA, Malmierca MS (2005) The inferior colliculus of the rat: quantitative immunocytochemical study of GABA and glycine. Neuroscience 136(3):907–925

    Article  CAS  PubMed  Google Scholar 

  • Morest DK (1971) Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Z Anat Entwicklungsgesch 133(2):216–246

    Article  CAS  PubMed  Google Scholar 

  • Morest DK (1975) Synaptic relationships of Golgi type II cells in the medial geniculate body of the cat. J Comp Neurol 162(2):157–193

    Article  CAS  PubMed  Google Scholar 

  • Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J Comp Neurol 222(2):209–236

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294(5550):2348–2351

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Ikeda M, Houtani T, Ueyama T, Baba K, Kondoh A, Yamamoto T, Yamashita T, Sugimoto T (1995) Immunohistochemical evidence for enkephalin and neuropeptide Y in rat inferior colliculus neurons that provide ascending or commissural fibers. Brain Res 690(2):236–240

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL (1984) Dorsal cochlear nucleus projections to the inferior colliculus in the cat: a light and electron microscopic study. J Comp Neurol 224(2):155–172

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction. J Comp Neurol 264(1):24–46

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL (2005) Neuronal organization in the inferior colliculus, chapter 2. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 69–114

    Chapter  Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222(2):237–264

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL, Kuwada S, Yin TC, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J Comp Neurol 303(1):75–100

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL, Winer JA, Beckius GE, Saint Marie RL (1994) Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol 340(1):27–42

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL, Beckius GE, Shneiderman A (1995) Axonal projections from the lateral and medial superior olive to the inferior colliculus of the cat: a study using electron microscopic autoradiography. J Comp Neurol 360(1):17–32

    Article  CAS  PubMed  Google Scholar 

  • Ono M, Ito T (2015) Functional organization of the mammalian auditory midbrain. J Physiol Sci

  • Ono M, Yanagawa Y, Koyano K (2005) GABAergic neurons in inferior colliculus of the GAD67-GFP knock-in mouse: electrophysiological and morphological properties. Neurosci Res 51(4):475–492

    Article  CAS  PubMed  Google Scholar 

  • Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17(10):3766–3777

    CAS  PubMed  Google Scholar 

  • Poon PW, Chen X, Cheung YM (1992) Differences in FM response correlate with morphology of neurons in the rat inferior colliculus. Exp Brain Res 91(1):94–104

    Article  CAS  PubMed  Google Scholar 

  • Roger M, Arnault P (1989) Anatomical study of the connections of the primary auditory area in the rat. J Comp Neurol 287(3):339–356

    Article  CAS  PubMed  Google Scholar 

  • Rothschild G, Nelken I, Mizrahi A (2010) Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13(3):353–360

    Article  CAS  PubMed  Google Scholar 

  • Saint Marie RL, Stanforth DA, Jubelier EM (1997) Substrate for rapid feedforward inhibition of the auditory forebrain. Brain Res 765(1):173–176

    Article  CAS  PubMed  Google Scholar 

  • Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17(15):5858–5867

    CAS  PubMed  Google Scholar 

  • Shi CJ, Cassell MD (1997) Cortical, thalamic, and amygdaloid projections of rat temporal cortex. J Comp Neurol 382(2):153–175

    Article  CAS  PubMed  Google Scholar 

  • Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21(8):2861–2877

    CAS  PubMed  Google Scholar 

  • Spirou GA, Rager J, Manis PB (2005) Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 136(3):843–863

    Article  CAS  PubMed  Google Scholar 

  • Sturm J, Nguyen T, Kandler K (2014) Development of intrinsic connectivity in the central nucleus of the mouse inferior colliculus. J Neurosci 34(45):15032–15046

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467(1):60–79

    Article  CAS  PubMed  Google Scholar 

  • Vater M, Kossl M, Horn AK (1992) GAD- and GABA-immunoreactivity in the ascending auditory pathway of horseshoe and mustached bats. J Comp Neurol 325(2):183–206

    Article  CAS  PubMed  Google Scholar 

  • Wallace MN, Shackleton TM, Palmer AR (2012) Morphological and physiological characteristics of laminar cells in the central nucleus of the inferior colliculus. Front Neural Circuits 6:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Whitley JM, Henkel CK (1984) Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. J Comp Neurol 229(2):257–270

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (2005) Three systems of descending projections to the inferior colliculus. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 231–247

    Chapter  Google Scholar 

  • Winer JA, Larue DT (1996) Evolution of GABAergic circuitry in the mammalian medial geniculate body. Proc Natl Acad Sci U S A 93(7):3083–3087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci U S A 93(15):8005–8010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong XR, Liang F, Zingg B, Ji XY, Ibrahim LA, Tao HW, Zhang LI (2015) Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nat Commun 6:7224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young ED, Oertel D (2004) Cochlear nucleus. In: Shepard GM (ed) The synaptic organization of the brain, 5th edn. Oxford University, Oxford, pp 125–163

    Chapter  Google Scholar 

Download references

Acknowledgments

Most of this study is based on long-term collaboration with many people in the Department of Anatomy, University of Fukui (Professor Satoshi Iino), Department of Morphological Brain Science, Kyoto University (Professor Takeshi Kaneko), and Department of Human and Artificial Intelligence Systems, University of Fukui (Professor Kazuyuki Murase and late Professor Hiroshi Ikeda). Authors are grateful to Professors Eric D. Young (Johns Hopkins University), Masahiko Takada (Kyoto University), Yuchio Yanagawa (Gunma University), and Hiroshi Riquimaroux (Doshisha University) for providing brain samples. This work was supported by grants from the Japan Society for the Promotion of Science (grant number 22700365 and 25430034, T.I.), the Uehara Memorial Foundation (T.I.), the Ichiro Kanehara Foundation (T.I.), NOVARTIS Foundation for the Promotion of Science (T.I.), Research and Education Program for Life Science of University of Fukui (T.I.), and NIH R01 DC00189 (D.L.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsufumi Ito.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, T., Bishop, D.C. & Oliver, D.L. Functional organization of the local circuit in the inferior colliculus. Anat Sci Int 91, 22–34 (2016). https://doi.org/10.1007/s12565-015-0308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-015-0308-8

Keywords

Navigation