Skip to main content
Log in

Spatial clusters of constitutively active neurons in mouse visual cortex

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The networks of neocortical neurons are coordinated by spontaneous activity, the level of which exhibits high heterogeneity among neurons, ranging from low activity levels to very high activity levels, even in the same network. Highly active neurons represent a small proportion in the cerebral cortex and are mingled in a web of the vast majority of neurons with low firing rates. However, little is known about the spatial arrangement of these highly active cells within the cerebral cortex. Here, we visualized their spatial distribution by labeling them with c-Fos, a neuronal activity marker, in the mouse primary visual cortex. By introducing energy-like and entropy-like parameters that did not require arbitrary thresholds for c-Fos positivity, we found that strongly c-Fos-expressing neurons were clustered in the vicinity. The cluster size measured approximately 100 μm in diameter and was smaller in layer 2/3 than in layers 5 and 6. Layer 1 neurons did not exhibit a clustered pattern of c-Fos-expressing neurons. Our novel statistical approaches are not subject to human bias and are thus widely applicable to evaluate the spatial bias of any particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barth AL, Poulet JF (2012) Experimental evidence for sparse firing in the neocortex. Trends Neurosci 35:345–355

    Article  CAS  PubMed  Google Scholar 

  • Beloozerova IN, Sirota MG, Swadlow HA (2003) Activity of different classes of neurons of the motor cortex during locomotion. J Neurosci 23:1087–1097

    CAS  PubMed  Google Scholar 

  • Benedetti BL, Takashima Y, Wen JA, Urban-Ciecko J, Barth AL (2013) Differential wiring of layer 2/3 neurons drives sparse and reliable firing during neocortical development. Cereb Cortex 23:2690–2699

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457:1133–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buzsaki G, Mizuseki K (2014) The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 15:264–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104

    Article  CAS  PubMed  Google Scholar 

  • de Kock CP, Sakmann B (2009) Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc Natl Acad Sci USA 106:16446–16450

    Article  PubMed Central  PubMed  Google Scholar 

  • de Kock CP, Bruno RM, Spors H, Sakmann B (2007) Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J Physiol 581:139–154

    Article  PubMed Central  PubMed  Google Scholar 

  • Dickey AS, Suminski A, Amit Y, Hatsopoulos NG (2009) Single-unit stability using chronically implanted multielectrode arrays. J Neurophysiol 102:1331–1339

    Article  PubMed Central  PubMed  Google Scholar 

  • Dragunow M, Faull R (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265

    Article  CAS  PubMed  Google Scholar 

  • Fraser GW, Schwartz AB (2012) Recording from the same neurons chronically in motor cortex. J Neurophysiol 107:1970–1978

    Article  PubMed Central  PubMed  Google Scholar 

  • Gall CM, Hess US, Lynch G (1998) Mapping brain networks engaged by, and changed by, learning. Neurobiol Learn Mem 70:14–36

    Article  CAS  PubMed  Google Scholar 

  • Hira R, Ohkubo F, Ozawa K et al (2013) Spatiotemporal dynamics of functional clusters of neurons in the mouse motor cortex during a voluntary movement. J Neurosci 33:1377–1390

    Article  CAS  PubMed  Google Scholar 

  • Hromadka T, Deweese MR, Zador AM (2008) Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol 6:e16

    Article  PubMed Central  PubMed  Google Scholar 

  • Jackson A, Fetz EE (2007) Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J Neurophysiol 98:3109–3118

    Article  PubMed  Google Scholar 

  • Jouhanneau JS, Ferrarese L, Estebanez L et al (2014) Cortical fosGFP expression reveals broad receptive field excitatory neurons targeted by POm. Neuron 84:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385

    Article  CAS  PubMed  Google Scholar 

  • Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425:954–956

    Article  CAS  PubMed  Google Scholar 

  • Ko H, Cossell L, Baragli C et al (2013) The emergence of functional microcircuits in visual cortex. Nature 496:96–100

    Article  CAS  PubMed  Google Scholar 

  • Krook-Magnuson E, Varga C, Lee SH, Soltesz I (2012) New dimensions of interneuronal specialization unmasked by principal cell heterogeneity. Trends Neurosci 35:175–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lerea LS, Butler LS, McNamara JO (1992) NMDA and non-NMDA receptor-mediated increase of c-fos mRNA in dentate gyrus neurons involves calcium influx via different routes. J Neurosci 12:2973–2981

    CAS  PubMed  Google Scholar 

  • Mank M, Santos AF, Direnberger S et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811

    Article  CAS  PubMed  Google Scholar 

  • Maruoka H, Kubota K, Kurokawa R, Tsuruno S, Hosoya T (2011) Periodic organization of a major subtype of pyramidal neurons in neocortical layer V. J Neurosci 31:18522–18542

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806

    CAS  PubMed  Google Scholar 

  • Meyer HS, Wimmer VC, Oberlaender M, de Kock CP, Sakmann B, Helmstaedter M (2010) Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex. Cereb Cortex 20:2277–2286

    Article  PubMed Central  PubMed  Google Scholar 

  • Minamisawa G, Funayama K, Matsuki N, Ikegaya Y (2011) Intact internal dynamics of the neocortex in acutely paralyzed mice. J Physiol Sci 61:343–348

    Article  PubMed  Google Scholar 

  • Mizuseki K, Buzsaki G (2013) Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep 4:1010–1021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molnar Z, Cheung AF (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115

    Article  CAS  PubMed  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    Article  CAS  PubMed  Google Scholar 

  • Morishima M, Kawaguchi Y (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci 26:4394–4405

    Article  CAS  PubMed  Google Scholar 

  • Morishima M, Morita K, Kubota Y, Kawaguchi Y (2011) Highly differentiated projection-specific cortical subnetworks. J Neurosci 31:10380–10391

    Article  CAS  PubMed  Google Scholar 

  • O’Connor DH, Peron SP, Huber D, Svoboda K (2010) Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67:1048–1061

    Article  PubMed  Google Scholar 

  • Poulet JF, Petersen CC (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–885

    Article  CAS  PubMed  Google Scholar 

  • Sagar SM, Sharp FR, Curran T (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240:1328–1331

    Article  CAS  PubMed  Google Scholar 

  • Sakata S, Harris KD (2009) Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64:404–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slomianka L, Amrein I, Knuesel I, Sorensen JC, Wolfer DP (2011) Hippocampal pyramidal cells: the reemergence of cortical lamination. Brain Struct Funct 216:301–317

    Article  PubMed Central  PubMed  Google Scholar 

  • Yassin L, Benedetti BL, Jouhanneau JS, Wen JA, Poulet JF, Barth AL (2010) An embedded subnetwork of highly active neurons in the neocortex. Neuron 68:1043–1050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshimura Y, Dantzker JL, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868–873

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Hiroyuki Hioki (Kyoto University) for providing us with anti-vGluT2 antibody. This work was supported by Grants-in-Aid for Science Research on Innovative Areas (22115003; 25119004).

Conflict of interest

We declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Ikegaya.

Additional information

K. Makino and K. Funayama contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makino, K., Funayama, K. & Ikegaya, Y. Spatial clusters of constitutively active neurons in mouse visual cortex. Anat Sci Int 91, 188–195 (2016). https://doi.org/10.1007/s12565-015-0284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-015-0284-z

Keywords

Navigation