Skip to main content
Log in

The effect of mobile scaffolding on academic achievement and cognitive load of third grade students in mathematical problem solving

  • Published:
Asia Pacific Education Review Aims and scope Submit manuscript

Abstract

In the study, problem-solving educational software (ProSES) was developed to reduce the challenges and mistakes experienced by primary school third-grade students in mathematical problem solving and to provide scaffolding and hint support for teacher help for the students using mobile technologies. The study aimed to determine the impact of the employment of this educational software on academic achievements and cognitive load of the students. The study was conducted with the experimental design, a quantitative research method, with 130 third grade students during the 2019–2020 academic year fall semester. Based on the study aim, ProSES was employed in two experimental and one control groups. All group members were assigned with simple random sampling method. Mental effort scale, task completion speed and academic achievement test were used to collect the study data. The findings showed that scaffolding was effective in academic achievement. Thus, this study adds to the current literature by showing that mobile scaffolding effective to improve students’ problem solving in mathematical problems of teacher support in primary education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Box 1
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acovelli, M., & Gamble, M. (1997). A coaching agent for learners using multimedia Simulations. Educational Technology, 37(2), 44–48. Retrieved from: https://www.jstor.org/stable/44429163

  • Akbulut, Y. (2010). Sosyal bilimlerde SPSS uygulamaları [SPSS applications in social sciences]. Pasifik Ofset.

    Google Scholar 

  • Aladağ, A. (2009). İlköğretim öğrencilerinin orantisal akil yürütmeye dayali sözel problemler ile gerçekçi cevap gerektiren problemleri çözme becerilerinin incelenmesi. [The examination of secondary school students? mathematical word problem solving abilities that depend on proportional reasoning and that require actual answer] [Unpublished Master Thesis]. Çukurova University.

  • An, Y. J. (2010). Scaffolding wiki-based, ill-structured problem solving in an online environment. MERLOT Journal of Online Learning and Teaching, 6(4), 723–734. Retrieved from https://jolt.merlot.org/vol6no4/an_1210.pdf

  • Baars, M., van Gog, T., de Bruin, A., & Paas, F. (2018). Accuracy of primary school children’s immediate and delayed judgments of learning about problem-solving tasks. Studies in Educational Evaluation, 58, 51–59. https://doi.org/10.1016/j.stueduc.2018.05.010

    Article  Google Scholar 

  • Balcı, A. (2016). Sosyal bilimlerde araştırma yöntem, teknik ve ilkeler (12. Baskı) [Research methods, techniques and principles in social sciences (12th ed.)]. Pegem Akademi.

  • Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers and Education, 70, 65–79. https://doi.org/10.1016/j.compedu.2013.08.003

    Article  Google Scholar 

  • Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797–817. https://doi.org/10.1080/095006900412284

    Article  ADS  Google Scholar 

  • Brünken, R., Seufert, T., & Paas, F. (2010). Measuring Cognitive Load. In J. L. Plass, R. Brünken, & R. Moreno (Eds.), Cognitive load theory (pp. 181–202). Cambridge University Press. https://doi.org/10.1017/CBO9780511844744.011

  • Çağıltay, K. (2006). Scaffolding strategies in electronic performance support systems: Types and challenges. Innovations in Education and Teaching International, 43(1), 93–103. https://doi.org/10.1080/14703290500467673

    Article  Google Scholar 

  • Cai, Z., Mao, P., Wang, D., He, J., Chen, X., & Fan, X. (2022). Effects of scaffolding in digital game-based learning on student’s achievement: A three-level meta-analysis. Educational Psychology Review, 34(2), 537–574. https://doi.org/10.1007/s10648-021-09655-0

    Article  Google Scholar 

  • Camp, G., Paas, F., Rikers, R., & van Merriënboer, J. J. G. (2001). Dynamic problem selection in air traffic control training: A comparison between performance, mental effort and mental efficiency. Computers in Human Behavior, 17, 575–595. https://doi.org/10.1016/S0747-5632(01)00028-0

    Article  Google Scholar 

  • Chen, C. H., & Law, V. (2016). Scaffolding individual and collaborative game-based learning in learning performance and intrinsic motivation. Computers in Human Behavior, 55, 1201–1212. https://doi.org/10.1016/j.chb.2015.03.010

    Article  Google Scholar 

  • Chen, S. Y., & Chang, Y. M. (2020). The impacts of real competition and virtual competition in digital game-based learning. Computers in Human Behavior, 104, 106171. https://doi.org/10.1016/j.chb.2019.106171

    Article  Google Scholar 

  • Cook, S. C., Collins, L. W., Morin, L. L., & Riccomini, P. J. (2020). Schema-based instruction for mathematical word problem solving: An evidence-based review for students with learning disabilities. Learning Disability Quarterly, 43(2), 75–87. https://doi.org/10.1177/0731948718823080

    Article  Google Scholar 

  • Davis, L. L. (1992). Instrument review: Getting the most from a panel of experts. Applied Nursing Research, 5(4), 194–197. https://doi.org/10.1016/S0897-1897(05)80008-4

    Article  ADS  MathSciNet  Google Scholar 

  • de Kock, W. D. (2016). Speech versus text supported hints in learning to solve word problems. Computers in Human Behavior, 57, 300–311. https://doi.org/10.1016/j.chb.2015.11.037

    Article  Google Scholar 

  • de Kock, W. D., & Harskamp, E. G. (2014). Can teachers in primary education implement a metacognitive computer program for word problem solving in their mathematics classes? Educational Research and Evaluation, 20(3), 231–250. https://doi.org/10.1080/13803611.2014.901921

    Article  Google Scholar 

  • Dennen, V. P. (2004). Cognitive apprenticeship in educational practice: Research on scaffolding, modelling, mentoring, and coaching as instructional strategies. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (pp. 813–828). Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Deno, S. L. (2005). Problem-solving assessment. In R. Brown-Chidsey (Ed.), Assessment for intervention: A problem-solving approach (pp. 10–40). Guilford Press.

    Google Scholar 

  • Doğan, O., & Gezmiş, A. T. (2018). İlkokul matematik 3 ders kitabı [Primary school math 3 textbook]. Ada Matbaacılık.

  • Doo, M. Y., Bonk, C., & Heo, H. (2020). A meta-analysis of scaffolding effects in online learning in higher education. The International Review of Research in Open and Distributed Learning, 21(3), 60–80. https://doi.org/10.19173/irrodl.v21i3.4638

    Article  Google Scholar 

  • Ekici, B., & Demir, M. K. (2018). İlkokul 4. sınıf öğrencilerinin dört işlem problemlerini̇ çözerken yaptıkları matematiksel hatalar [The mathematical errors on word problems made by 4th grades]. Journal of Theory and Practice in Education, 14(1), 61–80. https://doi.org/10.17244/eku.338880

    Article  Google Scholar 

  • Erdfelder, E., Faul, F., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149

    Article  PubMed  Google Scholar 

  • Erümit, A. K. (2014). Polya’nın problem çözme adımlarına göre hazırlanmış yapay zeka tabanlı öğretim ortamının öğrencilerin problem çözme süreçlerine etkisi [Artificial intelligence-based learning environments which preparing Polya’s problem solving steps effect on students’ problem solving processes] [Unpublished doctoral dissertation]. Karadeniz Technical University.

  • Eryılmaz Toksoy, S., & Akdeniz, A. R. (2017). Öğrencilerin problemleri çözüm süreçlerinin ipucu destekli problem çözme aracı ile belirlenmesi [Determining students’ problem solving processes via hint supported problem solving instrument]. Hacettepe University Journal of Education, 32(1), 185–208. https://doi.org/10.16986/HUJE.2016016668

    Article  Google Scholar 

  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design research in education and evaluate. McGraw-Hill.

    Google Scholar 

  • Fu, Q., & Hwang, G. (2018). Trends in mobile technology-supported collaborative learning: A systematic review of journal publications from 2007 to 2016. Computers & Education, 119, 129–143. https://doi.org/10.1016/j.compedu.2018.01.004

    Article  Google Scholar 

  • Fyfe, E. R., & Rittle-Johnson, B. (2016). The benefits of computer-generated feedback for mathematics problem solving. Journal of Experimental Child Psychology, 147, 140–151. https://doi.org/10.1016/j.jecp.2016.03.009

    Article  PubMed  Google Scholar 

  • García, T., Boom, J., Kroesbergen, E. H., Núñez, J. C., & Rodríguez, C. (2019). Planning, execution, and revision in mathematics problem solving: Does the order of the phases matter? Studies in Educational Evaluation, 61, 83–93. https://doi.org/10.1016/j.stueduc.2019.03.001

    Article  Google Scholar 

  • Gökçearslan, Ş., Solmaz, E., & Kukul, V. (2017). Mobil öğrenmeye yönelik hazırbulunuşluk ölçeği: Bir uyarlama çalışması [Mobile learning readiness scale: An adaptation study]. Educational Technology Theory and Practice, 7(1), 143–157. https://doi.org/10.17943/ETKU.72918

  • Güven, B., & Özçelik, Ç. (2017). İlkokul matematik dersine yönelik gerçekleştirilen lisansüstü eğitim tez çalışmalarına ilişkin bir inceleme [Examination of postgraduate education theses on mathematics subject in primary education]. Journal of Theory and Practice in Education, 13(4), 693–714. https://doi.org/10.17244/eku.347800.

  • Haataja, E., Garcia Moreno-Esteva, E., Salonen, V., Laine, A., Toivanen, M., & Hannula, M. S. (2019). Teacher’s visual attention when scaffolding collaborative mathematical problem solving. Teaching and Teacher Education. https://doi.org/10.1016/j.tate.2019.102877

    Article  Google Scholar 

  • Hannafin, M. J., Land, S., & Oliver, K. (1999). Open Learning Environments: Foundations, Methods, and Models. In C. M. Reigeluth (Ed.), Instructional-design theories and models: a new paradigm of instructional theory (Vol. II, pp. 115–140). Lawrence Erlbaum Associates.

    Google Scholar 

  • Hill, J. R., & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology, Research and Development, 49(3), 37–52. Retrieved from https://link.springer.com/article/https://doi.org/10.1007/BF02504914

  • İskenderoğlu, T., Altun, S. A., & Olkun, S. (2004). İlköğretim 3., 4. ve 5. sınıf öğrencilerinin standart sözel problemlerde işlem seçimleri [Elementary school students’ decisions in choosing an arithmetic operation for standard word problems]. Hacettepe University Journal of Education, 2004 (27), 126–134. Retrieved from http://www.efdergi.hacettepe.edu.tr/shw_artcl-807.html

  • Jackson, S. L., Krajcik, J., & Soloway, E. (1998). The design of guided learner-adaptable scaffolding in interactive learning environments. Proceeding of the CHI ‘98 conference on human factors in computing systems, Los Angeles, 18–23 April 1998. https://doi.org/10.1145/274644.274672

  • Jagušt, T., Botički, I., & So, H. J. (2018). Examining competitive, collaborative and adaptive gamification in young learners’ math learning. Computers and Education, 125, 444–457. https://doi.org/10.1016/j.compedu.2018.06.022

    Article  Google Scholar 

  • Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.

    Google Scholar 

  • Jumaat, N. F., & Tasir, Z. (2014). Instructional scaffolding in online learning environment: A meta-analysis. In: Proceedings—2014 international conference on teaching and learning in computing and engineering, LATICE 2014 (pp. 74–77). IEEE. https://doi.org/10.1109/LaTiCE.2014.22

  • Kajamies, A., Vauras, M., & Kinnunen, R. (2010). Instructing low-achievers in mathematical word problem solving. Scandinavian Journal of Educational Research, 54(4), 335–355. https://doi.org/10.1080/00313831.2010.493341

    Article  Google Scholar 

  • Karabacak, K. (2013). Matematik problemi çözme basamaklarının gösteri araçları ile öğretiminin öğrenci başarısına etkisi [Teaching mathematics problem solving steps with demonstration tools impact to student success]. Bartın University Journal of Faculty of Education, 2 (1), 323–341. Retrieved from https://dergipark.org.tr/tr/pub/buefad/issue/3812/51110

  • Kayapınar, A. (2015). Matematiksel problem çözme stratejileri öğretiminin ilkokul 4. sınıf öğrencilerinin problem çözme performanslarına ve öz düzenleyici öğrenmelerine etkisi [The effects of mathematical problem solving strategies instruction on problem solving performances and self-regulated learning of 4th grade primary school students] [Unpublished doctoral dissertation]. Bursa Uludağ University.

  • Kılıçkaya, M., & Toptaş, V. (2017). Problem çözme: Literatür incelenmesi [Problem solving: Searching literature]. International Journal of Education Technology and Scientific Researches, 2, 20–31. Retrieved from https://dergipark.org.tr/tr/download/article-file/308643

  • Kim, N. J., Belland, B. R., & Axelrod, D. (2018). Scaffolding for optimal challenge in K–12 problem-based learning. Interdisciplinary Journal of Problem-Based Learning, 13(1). https://doi.org/10.7771/1541-5015.1712

  • Kim, J. Y., & Lim, K. Y. (2019). Promoting learning in online, ill-Structured problem solving: The effects of scaffolding type and metacognition level. Computers and Education, 138, 116–129. https://doi.org/10.1016/j.compedu.2019.05.001

    Article  Google Scholar 

  • Kim, M. C., & Hannafin, J. H. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computers & Education, 56, 403–417. https://doi.org/10.1016/j.compedu.2010.08.024

    Article  Google Scholar 

  • Kösece Loğoğlu, P. (2016). Polya’nın problem çözme yöntemine dayalı etkinliklerle matematik öğretiminin ilkokul 4.sınıf öğrencilerinin matematik problemi çözme başarılarına etkisi [The effect of mathematics instruction with activities based on Polya’s problem solving method on fourth grade primary school students’ success of the mathematical problem solving] [Unpublished Master Thesis]. Mersin Universiy.

  • Lajoie, S. P. (2005). Extending the scaffolding metaphor. Instructional Science, 33, 541–557. https://doi.org/10.1007/s11251-005-1279-2

    Article  Google Scholar 

  • Lubin, A., Houdé, O., & de Neys, W. (2015). Evidence for children’s error sensitivity during arithmetic word problem solving. Learning and Instruction, 40, 1–8. https://doi.org/10.1016/j.learninstruc.2015.07.005

    Article  Google Scholar 

  • MEB. (2018). Matematik Dersi̇ Öğretim Programı [Mathematics curriculum]. TTKB.

  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. NCTM.

    Google Scholar 

  • Paas, F. G. W. C., & Van Merriënboer, J. J. G. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6(4), 351–371. Retrieved from: https://www.jstor.org/stable/23359294

  • Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429–434. https://doi.org/10.1037/0022-0663.84.4.429

    Article  Google Scholar 

  • Paas, F., Renkl, A., & Sweller, J. (2003a). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1–4. https://doi.org/10.1207/S15326985EP3801_1

    Article  Google Scholar 

  • Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003b). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63–71. https://doi.org/10.1207/S15326985EP3801

    Article  Google Scholar 

  • Paas, F. G., & Van Merriënboer, J. J. (1993). The efficiency of instructional conditions: An approach to combine mental effort and performance measures. Human Factors, 35(4), 737–743. https://doi.org/10.1177/001872089303500412

    Article  Google Scholar 

  • Pallant, J. (2011). SPSS survival manual: A step-by-step guide to data analysis using SPSS (4th ed.). Allen & Unwin.

    Google Scholar 

  • Park, S. I., Lee, G., & Kim, M. (2009). Do students benefit equally from interactive computer simulations regardless of prior knowledge levels? Computers & Education, 52(3), 649–655. https://doi.org/10.1016/j.compedu.2008.11.014

    Article  Google Scholar 

  • Phonapichat, P., Wongwanich, S., & Sujiva, S. (2014). An analysis of elementary school students’ difficulties in mathematical problem solving. Procedia—Social and Behavioral Sciences, 116, 3169–3174. https://doi.org/10.1016/j.sbspro.2014.01.728

    Article  Google Scholar 

  • Pol, H. J., Harskamp, E. G., & Suhre, C. J. M. (2008). The effect of the timing of instructional support in a computer-supported problem-solving program for students in secondary physics education. Computers in Human Behavior, 24, 1156–1178. https://doi.org/10.1016/j.chb.2007.04.002

    Article  Google Scholar 

  • Pólya, G. (1945). How to solve it. Princeton University Press.

    Book  Google Scholar 

  • Pólya, G. (1985). How to solve it: A new aspect of mathematical method (2nd ed.). Princeton University Press.

    Google Scholar 

  • Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., & Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337–386. https://doi.org/10.1207/s15327809jls1303

    Article  Google Scholar 

  • Ramirez, G., Chang, H., Maloney, E. A., Levine, S. C., & Beilock, S. L. (2016). On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies. Journal of Experimental Child Psychology, 141, 83–100. https://doi.org/10.1016/j.jecp.2015.07.014

    Article  PubMed  Google Scholar 

  • Razzaq, L., & Heffernan, N. T. (2006). Scaffolding vs. hints in the assistment system. Proceedings of the 8th International Conference on Intelligent Tutoring Systems (ITS 2006) (pp. 635–644). Retrieved from https://link.springer.com/chapter/https://doi.org/10.1007/11774303_63

  • Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304. https://doi.org/10.1207/s15327809jls1303_2

    Article  Google Scholar 

  • Richter, J., Scheiter, K., & Eitel, A. (2016). Signaling text-picture relations in multimedia learning: A comprehensive meta-analysis. Educational Research Review, 17, 19–36. https://doi.org/10.1016/j.edurev.2015.12.003

    Article  Google Scholar 

  • Sharma, P., & Hannafin, M. J. (2007). Scaffolding in technology-enhanced learning environments. Interactive Learning Environments, 15(1), 27–46. https://doi.org/10.1080/10494820600996972

    Article  Google Scholar 

  • Sung, Y. T., Chang, K. E., & Liu, T. C. (2016). The effects of integrating mobile devices with teaching and learning on students’ learning performance: A meta-analysis and research synthesis. Computers and Education, 94, 252–275. https://doi.org/10.1016/j.compedu.2015.11.008

    Article  Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285. https://doi.org/10.1016/0364-0213(88)90023-7

    Article  Google Scholar 

  • Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296. https://doi.org/10.1023/A:1022193728205

    Article  Google Scholar 

  • Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261–292. https://doi.org/10.1007/s10648-019-09465-5

    Article  Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics. Pearson.

    Google Scholar 

  • Tawfik, A. A., Law, V., Ge, X., Xing, W., & Kim, K. (2018). The effect of sustained vs. faded scaffolding on students’ argumentation in ill-structured problem solving. Computers in Human Behavior, 87, 436–449. https://doi.org/10.1016/j.chb.2018.01.035

    Article  Google Scholar 

  • ter Beek, M., Opdenakker, M. C., Spijkerboer, A. W., Brummer, L., Ozinga, H. W., & Strijbos, J. W. (2019). Scaffolding expository history text reading: Effects on adolescents’ comprehension, self-regulation, and motivation. Learning and Individual Differences, 74, 1–12. https://doi.org/10.1016/j.lindif.2019.06.003

    Article  Google Scholar 

  • Ulu, M., Tertemiz, N., & Peker, M. (2016). Determining the errors of primary school 5th grade students in non-routine problem solving. Kuramsal Eğitimbilim Dergisi, 9(4), 571–605. https://doi.org/10.5578/keg.10644

    Article  Google Scholar 

  • van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296. https://doi.org/10.1007/s10648-010-9127-6

    Article  Google Scholar 

  • van der Ven, S. H. G., Straatemeier, M., Jansen, B. R. J., Klinkenberg, S., & van der Maas, H. L. J. (2015). Learning multiplication: An integrated analysis of the multiplication ability of primary school children and the difficulty of single digit and multidigit multiplication problems. Learning and Individual Differences, 43, 48–62. https://doi.org/10.1016/j.lindif.2015.08.013

    Article  Google Scholar 

  • van Loon-Hillen, N., van Gog, T., & Brand-Gruwel, S. (2012). Effects of worked examples in a primary school mathematics curriculum. Interactive Learning Environments, 20(1), 89–99. https://doi.org/10.1080/10494821003755510

    Article  Google Scholar 

  • van Merriënboer, J. J. G., & Kirschner, P. A. (2018). Ten steps to complex learning a systematic approach to four-component instructional design (3rd ed.). Routledge.

    Google Scholar 

  • van Merriënboer, J. J. G., Schuurman, J. G., De Croock, M. B. M., & Paas, F. G. W. C. (2002). Redirecting learners’ attention during training: Effects on cognitive load, transfer test performance and training efficiency. Learning and Instruction, 12(1), 11–37. https://doi.org/10.1016/S0959-4752(01)00020-2

    Article  Google Scholar 

  • Verschaffel, L., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1(3), 195–229. https://doi.org/10.1207/s15327833mtl0103_2

    Article  Google Scholar 

  • Yaşar, Ş., & Papatğa, E. (2015). İlkokul matematik derslerine yönelik yapılan lisansüstü tezlerin incelenmesi [The analysis of the graduate theses related to mathematics courses]. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 5(2), 113–124. Retrieved from https://dergipark.org.tr/tr/download/article-file/200408

  • Yurdugül, H. (2005). Ölçek geliştirme çalışmalarında kapsam geçerliği için kapsam geçerlik indekslerinin kullanılması [Usage of content validity indexes for content validity in the studies of scale development]. XIV. Ulusal Eğitim Bilimleri Kongresi Pamukkale Üniversitesi Eğitim Fakültesi, 1–6.

  • Zhang, M., & Quintana, C. (2012). Scaffolding strategies for supporting middle school students’ online inquiry processes. Computers and Education, 58, 181–196. https://doi.org/10.1016/j.compedu.2011.07.016

Download references

Acknowledgements

This study is a part of the first author’s master thesis, which is supervised by the second author.

Funding

This work was supported by the Yozgat Bozok University Scientific Research Projects Commission [6602a-EĞT/19–318]; Yozgat Bozok University, Yozgat, Turkey.

Author information

Authors and Affiliations

Authors

Contributions

FHK: Conceptualization, Content development, Investigation, Methodology, Implementation, Writing—Original draft preparation. CM: Software development, Data Analyzing, Visualization, Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to Can Meşe.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical approval

This study was approved by the Yozgat Bozok University Ethics Committee (approval no. 10/16).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Descriptive mental effort scale findings

 

Groups

n

SD

Mental effort scale 3

G-Scaffolding

49

3.78

2.35

G-Hint

42

3.07

2.13

G-Control

39

3.49

2.28

Mental effort scale 4

G-Scaffolding

49

4.08

2.42

G-Hint

42

3.00

1.84

G-Control

39

3.51

2.21

Mental effort scale 5

G-Scaffolding

49

4.20

2.31

G-Hint

42

3.00

1.95

G-Control

39

3.62

2.11

Mental effort scale 6

G-Scaffolding

49

4.33

2.30

G-Hint

42

3.31

2.05

G-Control

39

3.41

2.17

Mental effort scale 7

G-Scaffolding

49

4.47

2.48

G-Hint

42

3.31

2.04

G-Control

39

3.46

2.19

Mental effort scale 8

G-Scaffolding

49

4.16

2.40

G-Hint

42

2.71

2.00

G-Control

39

3.59

2.35

Mental effort scale 9

G-Scaffolding

49

3.94

2.34

G-Hint

42

2.81

2.03

G-Control

39

3.28

2.28

Mental effort scale 10

G-Scaffolding

49

4.00

2.31

G-Hint

42

3.24

2.26

G-Control

39

3.51

2.38

Mental effort scale 11

G-Scaffolding

49

4.24

2.31

G-Hint

42

3.12

2.27

G-Control

39

3.62

2.38

Mental effort scale 12

G-Scaffolding

49

4.31

2.48

G-Hint

42

3.43

2.13

G-Control

39

3.54

2.28

Mental effort scale 13

G-Scaffolding

49

4.04

2.36

G-Hint

42

3.26

2.20

G-Control

39

3.49

2.30

Mental effort scale 14

G-Scaffolding

49

4.10

2.41

G-Hint

42

3.14

2.14

G-Control

39

3.67

2.25

Appendix 2: Descriptive findings on the task completion speed

 

Group

n

SD

Millisecond 3

G-Scaffolding

49

228,021.45

159,889.62

G-Hint

42

113,466.79

96,678.67

G-Control

39

111,914.95

83,238.92

Total

130

156,179.53

132,932.18

Millisecond 4

G-Scaffolding

49

345,060.90

171,442.63

G-Hint

42

120,777.45

97,805.74

G-Control

39

115,966.54

78,422.56

Total

130

203,871.78

167,167.41

Millisecond 5

G-Scaffolding

49

399,529.10

217,760.01

G-Hint

42

113,520.57

105,881.68

G-Control

39

117,134.56

79,977.38

Total

130

222,407.98

205,472.69

Millisecond 6

G-Scaffolding

49

268,468.61

138,759.70

G-Hint

42

116,784.60

81,201.91

G-Control

39

115,278.85

63,598.87

Total

130

173,506.08

126,291.19

Millisecond 7

G-Scaffolding

49

320,612.37

219,024.84

G-Hint

42

111,129.12

71,876.58

G-Control

39

87,201.21

66,445.82

Total

130

182,909.82

180,116.77

Millisecond 8

G-Scaffolding

49

65,158.65

24,647.46

G-Hint

42

80,523.43

32,556.84

G-Control

39

90,453.59

40,704.55

Total

130

77,711.14

34,095.59

Millisecond 9

G-Scaffolding

49

95,603.49

52,631.69

G-Hint

42

81,996.64

48,088.76

G-Control

39

64,542.03

45,362.82

Total

130

81,888.99

50,341.98

Millisecond 10

G-Scaffolding

49

210,022.67

115,145.05

G-Hint

42

97,886.17

67,594.59

G-Control

39

120,052.62

156,254.32

Total

130

146,802.94

126,851.12

Millisecond 11

G-Scaffolding

49

199,936.12

99,718.89

G-Hint

42

99,291.38

70,264.24

G-Control

39

92,437.49

68,807.55

Total

130

135,170.54

96,064.22

Millisecond 12

G-Scaffolding

49

315,574.08

142,915.20

G-Hint

42

103,404.02

79,937.68

G-Control

39

119,267.31

82,848.78

Total

130

188,134.80

146,945.74

Millisecond 13

G-Scaffolding

49

281,826.18

147,541.92

G-Hint

42

85,399.79

72,943.00

G-Control

39

100,291.10

71,602.64

Total

130

163,904.82

140,759.33

Millisecond 14

G-Scaffolding

49

117,075.96

70,072.89

G-Hint

42

135,352.38

83,621.67

G-Control

39

146,854.41

66,176.53

Total

130

131,914.18

74,124.91

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabay, F.H., Meşe, C. The effect of mobile scaffolding on academic achievement and cognitive load of third grade students in mathematical problem solving. Asia Pacific Educ. Rev. (2024). https://doi.org/10.1007/s12564-024-09951-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12564-024-09951-8

Keywords

Navigation