Arts and crafts as adjuncts to STEM education to foster creativity in gifted and talented students

Abstract

Studies have found little correlation between creativity and being gifted or talented, but do show that creative people are more broadly trained, have more avocational interests, and display more ability in these interests than the average person. In the sciences, technology, engineering and mathematics (STEM) fields, the avocational interests of the most successful professionals are unusually likely to involve fine arts such as painting or music; literary accomplishments; or crafts such as woodworking and metalworking, mechanics and electronics. Four types of evidence are brought together in this review to explore why such avocations might stimulate the creative capacity of STEM professionals. First, STEM professionals themselves argue that beyond verbal and mathematical skill, success requires a vivid visual and spatial imagination; hand–eye coordination and manipulative ability; skill with making and interpreting models; and a highly developed aesthetic or artistic sensibility. Second, controlled statistical studies of large groups (hundreds to thousands) of STEM professionals reveal strong correlations between artistic, musical, literary and crafts activities and measures of success in STEM subjects such as Nobel Prizes, numbers of patents or companies founded. Third, STEM professionals involved in these statistical studies themselves can describe specific ways in which their avocations stimulate their vocational successes. And fourth, many of these specific stimuli (such as improved observational and visual thinking skills, manipulative skills and tool use, and improved learning and retention strategies) also improve STEM learning in well-controlled classroom trials. The knowledge and skills required to be professionally creative are, in short, learnable.

This is a preview of subscription content, access via your institution.

References

  1. Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097. doi:10.1126/science.1204153.

    Article  Google Scholar 

  2. Alvarez, L. W. (1987). Adventures of a Physicist. New York: Basic Books.

    Google Scholar 

  3. Baer, J. (1994). Why you shouldn’t trust creativity tests. Educational Leadership, 51, 80–83.

    Google Scholar 

  4. Banting, F. (1979). [Banting portfolio.] Northward Journal, nos. 14/15, 21–97.

  5. Batey, M., & Furnham, A. (2006). Creativity, intelligence, and personality: A critical review of the scattered literature. Genetics Society and General Psychology Monographs, 132(4), 355–429.

    Article  Google Scholar 

  6. Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Aljoscha, C. (2014). Neubauer intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 73–83. doi:10.1016/j.intell.2014.05.007.

    Article  Google Scholar 

  7. Bishop, J. M. (2003). How to win a Nobel Prize. An unexpected life in science. Cambridge, M.A.: Harvard University Press.

    Google Scholar 

  8. Blackett, P. M. S. (1933). The craft of experimental physics. In H. Wright (Ed.), Cambridge University Studies (pp. 67–98). London: Ivor Nicholson & Watson.

    Google Scholar 

  9. Blade, M. F. (1963). Creativity in engineering. In M. A. Coler & P. A. BcGee (Eds.), Essays on Creativity in the Sciences (pp. 110–122). New York: New York University Press.

    Google Scholar 

  10. Blade M. F., & Watson W. S. (1955). Increase in spatial visualization test scores during engineering study. Psychological Monographs, 69(12), 1–13. doi:10.1037/h0093697.

  11. Burton, J. M., Horowitz, R., & Abeles, H. (2000). Learning in and through the arts: The question of transfer. Studies in art education, 41(3), 228–257. http://www.jstor.org/stable/1320379.

  12. Claparede, E., & Flournoy, T. (1902, 1904) L’Enseignement Mathematique 4 and 6; translated in part by J. Hadamard as “Inquiry into the working Methods of mathematicians”, in Hadamard, J. (1945). The Psycholoogy of Invention in the Mathematical Field (pp. 135–141). Princeton, NJ: Princeton University Press.

  13. Clark, R. W. (1971). Einstein. The life and times. New York: Crowell.

    Google Scholar 

  14. Quote investigator. http://quoteinvestigator.com/2014/05/22/solve/.

  15. Cox, C. M. (1926). The early mental traits of three hundred geniuses. Stanford, CA: Stanford University Press.

    Google Scholar 

  16. DeFelipe, J., & Jones, E. G. (1992). Santiago Ramon y Cajal and methods in neurohistology. Trends in Neuroscience (TINS), 15(7), 237–246.

    Article  Google Scholar 

  17. DeHaan, R. L. (2009). Teaching creativity and inventive problem solving in science. CBE Life Sciences Education, 8, 172–181.

    Article  Google Scholar 

  18. Deutsch & Shea Inc. (1957). A Profile of the engineer: A comprehensive study of research relating to the engineer. New York: Industrial Relations Newsletter Inc.

    Google Scholar 

  19. Dewey, J. (1934). Art as experience. New York: Minton, Balch.

    Google Scholar 

  20. Dolev, J. C., Friedlaender, L. K., & Braverman, I. M. (2001). Use of fine art to enhance visual diagnostic skills. JAMA, 286(9), 1020–1021.

    Article  Google Scholar 

  21. Eiduson, B. (1962). Scientists: Their psychological world. New York: Basic Books.

    Google Scholar 

  22. Eiduson, B., & Beckman, L. (Eds.). (1973). Science as a career choice: Theoretical and empirical studies. New York: Russell Sage Foundation.

    Google Scholar 

  23. Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Reviews, 2(4), 290–309.

    Article  Google Scholar 

  24. Ferguson, E. S. (1977). The mind’s eye: Nonverbal thought in technology. Science, 197(4306), 827–835.

    Article  Google Scholar 

  25. Ferguson, E. S. (1994). Engineering and the mind’s eye. Cambridge MA: MIT Press.

    Google Scholar 

  26. Fitzegerald, M., & James, I. (2007). The mind of the mathematician. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  27. Florman, S. C. (1976). The existential pleasures of engineering. New York: St. Martin’s Press.

    Google Scholar 

  28. Gibson, J., & Light, P. (1967). Intelligence among university scientists. Nature, 213 (5075), 441–443. http://dx.doi.org/10.1038/213441a0.

  29. Gleick, J. (1992). Genius: The life and science of Richard Feynman. New York: Pantheon Books.

    Google Scholar 

  30. Groenendijk, T., Janssen, T., Rijlaarsdam, G., & Van Den Bergh, H. (2013). Learning to be creative. The effects of observational learning on students’ design products and processes. Learning and Instruction, 28, 35–47.

    Article  Google Scholar 

  31. Grossman, S., Deupi, J., & Leitao, K. (2014). Seeing the forest and the trees: Increasing nurse practitioner students’ observational and mindfulness skills. Creative Nursing, 20(1), 67–72.

    Article  Google Scholar 

  32. Gruber, H. E. (1984). Darwin on man: A psychological study of scientific creativity (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  33. Gruber, H. E. (1988a). Networks of enterprise in creative scientific work. In B. Gholson, A. Houtsm, R. A. Neimayer, & W. Shadis (Eds.), Psychology of science and metascience. Cambridge, England: Cambridge University Press.

    Google Scholar 

  34. Gruber, H. E. (1988b). The evolving systems approach to creative work. Creativity Research Journal, 1, 27–51.

    Article  Google Scholar 

  35. Halpine, S. (2004). Introducing molecular visualization to primary schools in California: The STArt! teaching science through art program. Journal of Chemical Education, 81(10), 1431–1436.

    Article  Google Scholar 

  36. Hindle, B. (1981). Emulation and invention. New York: New York University Press.

    Google Scholar 

  37. Hindle, B. (1984). Spatial thinking in the bridge era: John Augustus Roebling versus John Audolphus Etzler. Annals New York Academy Sciences, 424, 131–148.

    Article  Google Scholar 

  38. Hinze, S., Rapp, D., Williamson, V., Shultz, M., Deslongchamps, G., & Williamson, K. (2013). Beyond ball-and-stick: Students’ processing of novel STEM visualizations. Learning and Instruction, 26, 12–21.

    Article  Google Scholar 

  39. Ingles, J., Sambrook, J., & Witkowski, J. A. (2003). Cold Spring Harbor: Cold Spring Harbor Press.

  40. Janos, P. (1987). A fifty year follow-up of Terman’s youngest college students and IQ-matched age mates. Gifted Child Quarterly, 31(2), 55–58.

    Article  Google Scholar 

  41. Jarvinen, M., & Jarvinen, L. (2012). Elevating student potential: Creating digital video to teach neurotransmission. The Journal of Undergraduate Neuroscience Education (JUNE), 11(1), A6–A11.

    Google Scholar 

  42. Jauk, J., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence, 41(4), 212–221. doi:10.1016/j.intell.2013.03.003.

    Article  Google Scholar 

  43. Jonides, J. (2008). Arts and cognition monograph: Musical skills and cognition.  http://www.dana.org/Publications/ReportDetails.aspx?id=44244.

  44. Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of creativity assessment. New Jersey: Wiley.

    Google Scholar 

  45. Ke, J.-L., Monk, M., & Duschl, R. (2005). Learning introductory quantum physics: Sensori-motor experiences and mental models. International Journal of Science Education, 27(13), 1571–1594.

    Article  Google Scholar 

  46. Kennedy, D. H. (1983). Little Sparrow: A Portrait of Sofya Kovalevskaya. Athens OH: Ohio University Press.

    Google Scholar 

  47. Kirklin, D., Duncan, J., McBride, S., Hunt, S., & Griffin, M. (2007). A cluster design controlled trial of arts-based observational skills training in primary care. Medical Education, 41, 395–401.

    Article  Google Scholar 

  48. Klarreich, E. (2014). Meet the first woman to win math’s most prestigious prize. Quanta Magazine, 08.13.14. http://www.wired.com/2014/08/maryam-mirzakhani-fields-medal/.

  49. Klugman, C. M., Peel, J., & Beckmann-Mendez, D. (2011). Art Rounds: Teaching interprofessional students visual thinking strategies at one school. Academic Medicine, 86(10), 1266–1271. doi:10.1097/ACM.0b013e31822c1427.

    Article  Google Scholar 

  50. Koch, W. E. (1978). The creative engineer. The art of inventing. New York: Plenum.

    Book  Google Scholar 

  51. Lamore, R., Root-Bernstein, R. S., Lawton, J., Schweitzer, J., Root-Bernstein, M. M., Roraback, E., et al. (2013). Arts and crafts: Critical to economic innovation. Economic Development Quarterly, 27(3), 221–229.

    Article  Google Scholar 

  52. Li, W., Li, X., Huang, L., Kong, X,. Yang, W., & Wei, D.(2014). Brain structure links trait creativity to openness to experience. Social, Cognitive and Affective Neuroscience. [Epub ahead of print].

  53. MacKinnon, D. W. (1961). Fostering creativity in students of engineering. Journal of Engineering Education, 53(3), 129–142.

    Google Scholar 

  54. Mandelbrot, B. B. (2012). The Fractalist. Memoir of a Scientific Maverick. New York: Pantheon Books.

    Google Scholar 

  55. Mangione, S., & Nieman, L. Z. (1997). Cardiac auscultatory skills of internal medicine and family practice trainees. A comparison of diagnostic proficiency. JAMA, 278(9), 717–722.

    Article  Google Scholar 

  56. Mangione, S., & Nieman, L. Z. (1999). Pulmonary auscultatory skills during training in internal medicine and family practice. American Journal of Respiratory Critical Care Medicine, 159, 1119–1124.

    Article  Google Scholar 

  57. Mansfield, R. S., & Busse, T. V. (1981). The psychology of creativity and discovery. Scientists and their work. Chicago: Nelson-Hall.

    Google Scholar 

  58. Milgram, R., & Hong, E. (1993). Creative thinking and creative performance in adolescents as predictors of creative attainments in adults: A follow-up study after 18 years. In R. Subotnik & K. Arnold (Eds.), Beyond Terman: Longitudinal studies in contemporary gifted education. Norwood, N.J.: Ablex.

    Google Scholar 

  59. Möbius, P. J. (1904). Ueber die Anlage zur Mathematik. Berlin: Paul Julius.

    Google Scholar 

  60. Naghshineh, S., Hafler, J. P., Miller, A. R., Blanco, M. A., Lipsitz, S. R., Dubroff, R. P., et al. (2008). Formal art observation training improves medical students’ visual diagnostic skills. Journal of General Internal Medicine, 23(7), 991–997. doi:10.1007/s11606-008-0667-0.

    Article  Google Scholar 

  61. New England, Consultants, Inc. (1962). The engineer today. Boston: New England Consultants.

    Google Scholar 

  62. Ostwald, W. (1905). Kunst und Wissenshcaft. Leipzig: Von Veit.

    Google Scholar 

  63. Parnes, S. J., & Meadow, A. (1963). Development of individual creative talent. In C. W. Taylor & F. Barron (Eds.), Scientific creativity. Its recognition and development (pp. 311–320). New York: Wiley.

    Google Scholar 

  64. Perry, M., Maffulli, N., Willson, S., & Morrissey, D. (2011). The effectiveness of arts-based interventions in medical education: A literature review. Medical Education, 45(2), 141–148. doi:10.1111/j.1365-2923.2010.03848.x.

    Article  Google Scholar 

  65. Petroski, H. (1996). Invention by design. How engineers get from thought to thing. Cambridge, MA: Harvard University Press.

    Google Scholar 

  66. Planck, M. (1949). Scientific autobiography and other papers. Translated by Frank Gaynor. New York: Philosophical Library.

    Google Scholar 

  67. Platt, W., & Baker, R. A. (1931). The relationship of the scientific “hunch” to research. Journal of Chemical Education, 8, 1969–2002.

    Article  Google Scholar 

  68. Ramon y Cajal, S. (1951). Precepts and counsels on scientific investigation: Stimulants of the Spirit (J. M. Sanchez-Perez, Trans.). Mountain View, CA: Pacific Press Publishing Association.

  69. Robinson, A. (2011). Is high intelligence necessary to be a genius? psychology today blog “sudden genius”. http://www.psychologytoday.com/blog/sudden-genius/201101/is-high-intelligence-necessary-be-genius.

  70. Roe, A. (1953). The making of a scientist. New York: Dodd Mead.

    Google Scholar 

  71. Root-Bernstein, R. S. (1989). Discovering. Inventing and solving problems at the frontiers of science. Cambridge, MA: Harvard University Press.

    Google Scholar 

  72. Root-Bernstein, R. S. (2003). Polymathy in creative adults. In L. Shavanina (Ed.), The handbook of giftedness (pp. 267–278). New York: Springer Science.

    Google Scholar 

  73. Root-Bernstein, R. S. (2009). Polymathy. In B. Kerr (Ed.), Encyclopedia of giftedness, creativity and talent (pp. 685–687). New York: Sage.

    Google Scholar 

  74. Root-Bernstein, R. S., & Root-Bernstein, M. M. (1999). Sparks of Genius. Boston: Houghton Mifflin.

  75. Root-Bernstein, M. M., & Root-Bernstein, R. S. (2003). Martha Graham and the polymathic imagination: A case of multiple intelligences or universal tools for thinking? Journal of Dance Education, 3, 16–27.

    Article  Google Scholar 

  76. Root-Bernstein, R. S., & Root-Bernstein, M. M. (2004). Artistic scientists and scientific artists: The link between polymathy and creativity. In R. Sternberg, E. L. Grigorenko, & J. L. Singer (Eds.), Creativity: From potential to realization (pp. 127–151). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  77. Root-Bernstein, R. S., & Root-Bernstein, M. M. (2011). Life stages of creativity. In M. Runco & S. Pritzker (Eds.), The encyclopedia of creativity (2nd ed., pp. 47–55). Oxford: Elsevier.

    Chapter  Google Scholar 

  78. Root-Bernstein, R. S., Bernstein, M., & Schlichting, H. W. (Eds.). (1993). Identification of scientists making long–term, high impact contributions, with notes on their methods of working, Creativity Research Journal 6 (4): 329–343. Reprinted in R. D. Smith, scientific work and creativity: Advice from the masters (pp. 323–330). Clearwater, FL: Citizen Scientists League.

    Google Scholar 

  79. Root-Bernstein, R. S., Bernstein, M., & Garnier, H. W. (1995). Correlations between avocations, scientific style, and professional impact of thirty–eight scientists of the Eiduson study. Creativity Research Journal, 8, 115–137.

    Article  Google Scholar 

  80. Root-Bernstein, R. S., Allen, L., Beach, L., Bhadula, R., Fast, J., Hosey, D., et al. (2008). Arts foster success: Comparison of Nobel Prizewinners, royal society, national academy, and sigma Xi members. Journal of the Psychology of Science and Technology, 1(2), 51–63.

    Article  Google Scholar 

  81. Root-Bernstein, R. S., Lamore, R., Lawton, J., Schweitzer, J., Root-Bernstein, M. M., Roraback, E., et al. (2013). Arts, crafts and STEM innovation: A network approach to understanding the creative knowledge economy. In M. Rush (Ed.), Creative communities: Art works in economic development (pp. 97–117). Washington DC: National Endowment for the Arts and The Brookings Institution.

    Google Scholar 

  82. Rossman, J. (1964). Industrial creativity. The psychology of the inventor. New Hyde Park, NY: University Books.

    Google Scholar 

  83. Saunders, D. R. (1963). Some measures related to success and placement in basic engineering research and development. In C. W. Taylor & F. Barron (Eds.), Scientific Creativity. Its recognition and development (pp. 321–329). New York: Wiley.

    Google Scholar 

  84. Sayen, J. (1985). Einstein in America. New York: Crown.

    Google Scholar 

  85. Schellenberg, E. G. (2004). Music lessons enhance IQ. American Psychological Society, 15(8), 511–514.

    Google Scholar 

  86. Seagoe, M. (1975). Terman and the gifted. Los Altos, CA: W. Kaufmann.

    Google Scholar 

  87. Shurkin, J. N. (2008). Broken Genius: The rise and fall of William Shockley, creator of the electronic age. New York: Palgrave Macmillan.

    Google Scholar 

  88. Sorby, S. (2009a). Developing spatial cognitive skills among middle school students. Cognitive Processing, 10(2), 312–315.

    Article  Google Scholar 

  89. Sorby, S. A. (2009b). Educational research in developing 3-D spatial skills for engineering students. International Journal of Science Education, 31(3), 459–480.

    Article  Google Scholar 

  90. Sorby, S., & Baartmans, B. (1996). A course for the development of 3-D spatial visualization skills. Engineering Design Graphics Journal, 60(1), 13–20.

    Google Scholar 

  91. Sorby, S., & Baartmans, B. (2000). The development and assessment of a course for enhancing the 3-D spatial visualization skills of first-year engineering students. Journal of Engineering Education, 89(3), 301–307.

    Article  Google Scholar 

  92. Southgate, D., & Roscigno, V. (2009). The impact of music on childhood and adolescent achievement. Social Science Quarterly, 90(1), 4–21. doi:10.1111/j.154076237.2009.00598.

    Article  Google Scholar 

  93. Subotnik, R. F., Karp, D. E., & Morgan, E. R. (1989). High IQ children at midlife: An investigation into the generalizability of Terman’s genetic studies. Roeper Review, 11(3), 139–144.

    Article  Google Scholar 

  94. Sylvester, J. J. (1886). Music and mathematics. Nature 35 (9 Dec), 132.

  95. Taylor, D. W. (1963). Variables related to creativity and productivity among men in two research laboratories. In C. W. Taylor & F. Barron (Eds.), Scientific creativity: Its recognition and development (pp. 228–250). New York: Wiley.

    Google Scholar 

  96. Terman, L., & Oden, M. H. (1959). The gifted group at mid-life: Thirty-five years follow-up of the superior child. San Jose, CA.: Stanford University Press.

    Google Scholar 

  97. Urbain, G. (1924). Le Tombeau d’Aristoxene. Essai sur la Musique, Paris: Doin.

    Google Scholar 

  98. Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how? In B. Ross (Ed.), Psychology of Learning and Motivation (Vol. 57, pp. 147–181). Oxford: Academic Press.

    Chapter  Google Scholar 

  99. Vertesi, J. (2012). Seeing like a Rover: Visualization, embodiment, and the interaction on the Marse Exploration Rover Mission. Social Studies of Science, 42(3), 393–313. doi:10.1177/0306312712444645.

  100. Visher, Stephen S. (1947). Scientists starred 1903–1943. In: American mens of science (pp. 106–107). Baltimore: Johns Hopkins Press.

  101. Weisburd, S. (1987). The spark. Personal testimonials of creativity. Science News, 132, 298–300.

    Google Scholar 

  102. White, R. K. (1931). The versatility of genius. Journal of Social Psychology, 2, 482.

    Article  Google Scholar 

  103. Wilson, M. (1972). Passion to Know. Garden City, NY: Doubleday.

    Google Scholar 

  104. Wilson RR. (1992). Starting Fermilab. http://history.fnal.gov/GoldenBooks/gb_wilson2.html.

  105. Wolf, G. (1993). Steve Jobs: The next insanely great thing. Wired Magazine. http://archive.wired.com/wired/archive/4.02/jobs_pr.html.

  106. Won, P.-H. (2001). The comparison between visual thinking using computer and conventional media in the concept generation stages of design. Automation in Construction, 10, 319–325.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Root-Bernstein.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Root-Bernstein, R. Arts and crafts as adjuncts to STEM education to foster creativity in gifted and talented students. Asia Pacific Educ. Rev. 16, 203–212 (2015). https://doi.org/10.1007/s12564-015-9362-0

Download citation

Keywords

  • Polymathy
  • Creativity
  • Spatial imagination
  • Manipulative skill
  • Music
  • Entrepreneurship