Skip to main content

Photosynthetic and respiratory characteristics of the shade-tolerant kelp Agarum clathratum

Abstract

To clarify the photosynthetic and respiratory characteristics of Agarum clathratum in relation to shade tolerance, parameters of photosynthetic light-response curves of A. clathratum growing at depths of 5–16 m were compared with those of Saccharina coriacea growing at shallower depths of 1–10 m. Moreover, using the photosynthetic parameters and continuous data on underwater photosynthetically active radiation (PAR), daily photosynthesis and respiration in the underwater light environment for the two species were estimated and compared. The lower values of respiration rate and light compensation point (LCP) of A. clathratum (1.8–2.5 µL O2 cm–2 h–1, 2.0–2.4 µmol m–2 s–1), compared with those of S. coriacea (5.2–5.6 µL O2 cm–2 h–1, 4.9–8.3 µmol m–2 s–1), indicate that it reduces daily respiration and maintains a positive daily net photosynthesis at low light intensities, enabling it to inhabit deeper depths than S. coriacea. Lower ratios of daily respiration to daily gross photosynthesis (14.7–35.2%) estimated in A. clathratum, compared with those (28.1–84.0%) in S. coriacea, also suggest a shade-tolerant strategy for achieving greater net photosynthesis by reducing respiration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abe E (1998a) Studies on classification of kelp fishing grounds in Habomai region. FY1996 Ann Rep Hokkaido Kushiro Fish Exp Sta 173–180 (In Japanese)

  • Abe E (1998b) Studies on classification of kelp fishing grounds in Habomai region. FY1997 Ann Rep Hokkaido Kushiro Fish Exp Sta 230–236 (In Japanese)

  • Abe E (1999) Studies on classification of kelp fishing grounds in Habomai region. Hokkaido Kushiro Fish Exp Sta, Habomai Fishermen’s Coop Assoc, Kushiro (In Japanese)

  • Atkin OK, Scheurwater I, Pons TL (2007) Respiration as a percentage of daily photosynthesis in whole plants in homeostatic at moderate, but not high, growth temperatures. New Phytol 174:367–380

    CAS  PubMed  Article  Google Scholar 

  • Blain C, Gagnon P (2014) Canopy-forming seaweeds in urchin-dominated systems in eastern Canada: structuring forces or simple prey for keystone grazer? PLoS ONE 9(5):e98204

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Ann Rev Plant Physiol 28:355–377

    CAS  Article  Google Scholar 

  • Boo GH, Lindstrom SC, Klochkova NG, Yotsukura N, Yang EC, Kim HG, Waaland JR, Cho GY, Miller KA, Boo SM (2011) Taxonomy and biogeography of Agarum and Thalassiophyllum (Laminariales, Phaeophyceae) based on sequences of nuclear, mitochondrial, and plastid markers. Taxon 60:831–840

    Article  Google Scholar 

  • Borlongan AI, Matsumoto R, Nakazaki Y, Shimada N, Kozono J, Nishihara NG, Shimada S, Watanabe Y, Terada R (2018) Photosynthetic activity of two life history stages of Costaria costata (Laminariales, Phaeophyceae) in response to PAR and temperature gradient. Phycologia 57:159–168

    CAS  Article  Google Scholar 

  • Borlongan AI, Maeno Y, Kozono J, Endo H, Shimada S, Nishihara NG, Terada R (2019a) Photosynthetic performance of Saccharina angustata (Laminariales, Phaeophyceae) at the southern boundary of subarctic kelp distribution in Japan. Phycologia 58:300–309

    CAS  Article  Google Scholar 

  • Borlongan AI, Nishihara NG, Shimada S, Terada R (2019b) Assessment of photosynthetic performance in the two life history stages of Alaria crassifolia (Laminariales, Phaeophyceae). Phycol Res 67:28–38

    CAS  Article  Google Scholar 

  • Borlongan AI, Arita R, Nishihara NG, Terada R (2020) The effects of temperature and irradiance on the photosynthesis of two heteromorphic life history stages of Saccharina japonica (Laminariales) from Japan. J Appl Phycol 32:4175–4187

    CAS  Article  Google Scholar 

  • Borum J, Pedersen M, Krause-Jensen D, Christensen P, Nielsen K (2002) Biomass, photosynthesis and growth of Laminaria saccharina in a high-arctic fjord, NE Greenland. Mar Biol 141:11–19

    Article  Google Scholar 

  • Craine JM, Reich PB (2005) Leaf-level light compensation points in shade-tolerant woody seedlings. New Phytol 166:710–713

    PubMed  Article  Google Scholar 

  • Delebecq G, Davoult D, Menu D, Janquin MA, Dauvin JC, Gevaert F (2013) Influence of local environmental conditions on the seasonal acclimation process and the daily integrated production rates of Laminaria digitata (Phaeophyta) in the English Channel. Mar Biol 160:503–517

    Article  Google Scholar 

  • Filbee-Dexter K, Wernberg T, Fredriksen S, Norderhaug KM, Pedersen MF (2019) Arctic kelp forests: diversity, resilience and future. Glob Plant Change 172:1–14

    Article  Google Scholar 

  • Gagnon P, Himmelman JH, Johnson LE (2003) Algal colonization in urchin barrens: defense by association during recruitment of the brown alga Agarum cribrosum. J Exp Mar Biol Ecol 290:179–196

    Article  Google Scholar 

  • Gagnon P, Himmelman JH, Johnson LE (2004) Temporal variation in community interfaces: kelp-bed boundary dynamics adjacent to persistent urchin barrens. Mar Biol 144:1191–1203

    Article  Google Scholar 

  • Gagnon P, Johnson LE, Himmelman JH (2005) Kelp patch dynamics in the face of intense herbivory: stability of Agarum clathratum (Phaeophyta) stands and associated flora on urchin barrens. J Phycol 41:498–505

    Article  Google Scholar 

  • Gevaert F, Delebecq G, Menu D, Brutier L (2011) A fully automated system for measurements of photosynthetic oxygen exchange under immersed conditions: an example of its use in Laminaria digitata (Heterokontophyta: Phaeophyceae). Limnol Oceanogr: Methods 9:361–379

    CAS  Article  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63–92

    Google Scholar 

  • Graham MH, Kinlan BP, Druehl LD, Garske LE, Banks S (2007) Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. PNAS 104:16576–16580

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gόmez I, Weykam G, Kloser H, Wiencke C (1997) Photosynthetic light requirements, metabolic carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Prog Ser 148:281–293

    Article  Google Scholar 

  • Himmelman JH, Nédélec H (1990) Urchin foraging and algal survival strategies in intensely grazed communities in eastern Canada. Can J Fish Aquat Sci 47:1011–1026

    Article  Google Scholar 

  • Johansson P, Snoeijs P (2002) Macroalgal photosynthetic responses to light in relation to thallus morphology and depth zonation. Mar Ecol Prog Ser 244:63–72

    Article  Google Scholar 

  • Kawashima S (1993) An illustrated book of kelp species from Japan. Kitanihon-Kaiyo Center Co, Sapporo (In Japanese)

  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecol Biogeogr 21:393–404

    Article  Google Scholar 

  • Koch K, Thiel M, Hagen W, Graeve M, Gomez I, Jofre D, Hofmann LC, Tala F, Bischof K (2016) Short- and long-term acclimation patterns of the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) along a depth gradient. J Phycol 52:260–273

    CAS  PubMed  Article  Google Scholar 

  • Krause-Jensen D, Duarte CM (2014) Expansion of vegetated coastal ecosystems in the future Arctic. Front Mar Sci 1:77

    Article  Google Scholar 

  • Krause-Jensen D, Marbà N, Olesen B, Sejr MK, Christensen PB, Rodrigues J, Renaud P, Balsby TJS, Rysgaard S (2012) Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob Chang Biol 18:2981–2994

    PubMed  PubMed Central  Article  Google Scholar 

  • Krause-Jensen D, Sejr MK, Bruhn A, Rasmussen MB, Christensen PB, Hansen JLS, Duarte CM, Bruntse G, Wegeberg S (2019) Deep penetration of kelps offshore along the west coast of Greenland. Front Mar Sci 6:375

    Article  Google Scholar 

  • Lüning K (1990) North America: cold and warm temperate regions in the North Atlantic. Seaweeds-Their environment, biogeography, and ecophysiology. John Wiley & Sons, New York, pp 123–133

    Google Scholar 

  • Lüning K, Dring MJ (1979) Continuous underwater light measurement near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region. Helgoländer Wiss Meeresunters 32:403–424

    Article  Google Scholar 

  • Markager S, Sand-Jensen K (1992) Light requirements and depth zonation of marine macroalgae. Mar Ecol Prog Ser 88:83–92

    Article  Google Scholar 

  • Markager S, Sand-Jensen K (1996) Implications of thallus thickness for growth-irradiance relationships of marine macroalgae. Eur J Phycol 31:79–87

    Article  Google Scholar 

  • Ozaki A, Mizuta H, Yamamoto H (2001) Physiological differences between the nutrient uptakes of Kjellmaniella crassifolia and Laminaria japonica (Phaeophyceae). Fish Sci 67:415–419

    CAS  Article  Google Scholar 

  • Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    PubMed  Article  Google Scholar 

  • Rodrigues MA, dos Santos CP, Yoneshigue-Valentin Y, Strbac D, Hall DO (2000) Photosynthetic light-response curves and photoinhibition of the deep-water Laminaria abyssalis and the intertidal Laminaria digitata (Phaeophyceae). J Phycol 36:97–106

    CAS  Article  Google Scholar 

  • Rodrigues MA, dos Santos CP, Young AJ, Strbac D, Hall DO (2002) A smaller and impaired xanthophyll cycle makes the deep sea macroalgae Laminaria abyssalis (Phaeophyceae) highly sensitive to daylight when compared with shallow water Laminaria digitata. J Phycol 38:939–947

    Article  Google Scholar 

  • Sakanishi Y, Iizumi H (2004) Underwater quantum irradiance at the Pacific coast of Nemuro Peninsula, Hokkaido: relationship between underwater light levels and lower depth limit of Laminariales plants. Jpn J Phycol 52:141–148 (In Japanese with English abstract)

    Google Scholar 

  • Sakanishi Y, Ito H, Iizumi H (2004) Photosynthetic light-response curves of cold water species of Laminariales at the eastern Pacific coast of Hokkaido, Japan. Jpn J Phycol 52:33–39

    Google Scholar 

  • Santelices B (2007) The discovery of kelp forests in deep-water habitats of tropical regions. PNAS 104:19163–19164

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sato Y, Kozono Z, Nishihara NG, Terada R (2020) Effect of light and temperature on photosynthesis of a cultivated brown alga, Saccharina sculpera (Laminariales), form Japan. Phycologia 59:375–384

    Article  Google Scholar 

  • Selivanova ON, Zhigadlova GG, Hansen GI (2007) Revision of the systematics of algae in the order Laminariales (Phaeophyta) from the far-eastern seas of Russia on the basis of molecular–phylogenetic data. Russian J Mar Biol 33:278–289

    Article  Google Scholar 

  • Serisawa Y, Yokohama Y, Aruga Y, Tanaka J (2001) Photosynthesis and respiration in bladelets of Ecklonia cava Kjellman (Laminariales, Phaeophyta) in two localities with different temperature conditions. Phycol Res 49:1–11

    CAS  Article  Google Scholar 

  • Spalding H, Foster MS, Heine JN (2003) Composition, distribution, and abundance of deep-water (>30 m) macroalgae in central California. J Phycol 39:273–284

    Article  Google Scholar 

  • Steinberg PD (1985) Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecol Monogr 55:333–349

    Article  Google Scholar 

  • Terada R, Shikada S, Watanabe Y, Nakazaki Y, Matsumoto K, Kozono J, Saino N, Nishihara GN (2016) Effect of PAR and temperature on the photosynthesis of the Japanese alga Ecklonia radicosa (Laminariales), based on field and laboratory measurements. Phycologia 55:178–186

    CAS  Article  Google Scholar 

  • Vadas RL (1977) Preferential feeding: an optimization strategy in sea urchins. Ecol Monogr 47:337–371

    Article  Google Scholar 

  • Vadas RL, Steneck RS (1988) Zonation of deep water benthic algae in the Gulf of Maine. J Phycol 24:338–346

    Article  Google Scholar 

  • Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Ann Rev Ecol Evol Syst 39:237–257

    Article  Google Scholar 

  • Walters MB, Reich PB (1999) Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ? New Phytol 143:143–154

    Article  Google Scholar 

  • Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17:281–291

    PubMed  Article  Google Scholar 

  • Wernberg T, Krumhansl K, Filbee-Dexter K, Pedersen MF (2019) Status and trends for the world’s kelp forests. In: Sheppard C (ed) World seas: an environmental evaluation. Academic Press, Cambridge, pp 57–78

    Chapter  Google Scholar 

  • Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst GO (1993) Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Bot Acta 106:78–87

    Article  Google Scholar 

  • Yamada I (1980) Benthic marine algal vegetation along the coasts of Hokkaido, with special reference to the vertical distribution. J Fac Sci Hokkaido Univ Ser V (botany) 12:11–98

    Google Scholar 

  • Yoshida T (1998) Marine algae of Japan. Uchida Rokakuho, Tokyo (In Japanese)

  • Žuljević A, Peters AF, Nikolić V, Antolić B, Despalatović M, Cvitković I, Isajlović I, Mihanović H, Matijević S, Shewring DM, Canese S, Katsaros C, Kupper FC (2016) The Mediterranean deep-water kelp Laminaria rodriguezii is an endangered species in the Adriatic Sea. Mar Biol 163:69

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Habomai Fishermen’s Cooperative Association for permitting the fieldwork in their administrative waters. We thank Mr. K. Minatoya for his support in collecting samples, Dr. Y. Takada for his valuable comments, and Dr. C. Norman for improving the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Sakanishi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 413 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreementwith the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakanishi, Y., Kasai, H. & Tanaka, J. Photosynthetic and respiratory characteristics of the shade-tolerant kelp Agarum clathratum. Fish Sci 88, 555–563 (2022). https://doi.org/10.1007/s12562-022-01624-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-022-01624-y

Keywords

  • Dark respiration
  • Light compensation point (LCP)
  • Percent surface irradiance (%SI)
  • Photosynthetic light-response curve
  • Plant specific carbon (PSC)
  • Saccharina coriacea
  • Shade-tolerant species