Skip to main content

Genetic population structure of Japanese sardinella Sardinella zunasi around Japan

Abstract

The population structure of Japanese sardinella Sardinella zunasi around Japan was examined based on complete nucleotide sequences of the mitochondrial control region. Phylogenetic analyses revealed four major lineages (A–D). The frequency of lineage A was higher on the Pacific coast, in the Seto Inland Sea, and on the Sea of Japan coast of Kyushu, while the frequency of lineage B was higher on the Sea of Japan coast of Honshu and in Ariake Sound. The frequency of lineage C was much lower than that of lineages A and B at all nine localities in Japan. Lineage D was detected only in Ariake Sound and the Seto Inland Sea, being considered to be a continental relict. The current distribution pattern of S. zunasi was indicated to be constructed by secondary contact among those four lineages, each having different evolutionary history. Hierarchical analyses of molecular variance indicated S. zunasi around Japan to be structured into three units: (1) the group of the coast of Kyushu, including Ariake Sound, and the Pacific coast south of the Izu Peninsula, including the Seto Inland Sea, (2) the Pacific coast north of the Izu Peninsula, and (3) the Sea of Japan coast of Honshu.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  2. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  3. Berggren WA (1972) Late Pliocene–Pleistocene glaciation. In: Laughton AS, Berggren WA, Benson RN, Davies TA, Franz U, Musich LF, Perch-Nielsen K, Ruffman AS, van Hinte JE, Whitmarsh RB (eds) Initial reports of the deep sea drilling project, vol XII. Government Printing Office, Washington, pp 952–963

    Google Scholar 

  4. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    PubMed  PubMed Central  Google Scholar 

  5. Bowen BW, Grant WS (1997) Phylogeography of the sardines (Sardinops spp.): assessing biogeographic models and population histories in temperate upwelling zones. Evolution 51:1601–1610

    CAS  PubMed  Google Scholar 

  6. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714

    CAS  PubMed  Google Scholar 

  7. Crandall ED, Jones ME, Muñoz MM, Akinronbi B, Erdmann MV, Barber PH (2008) Comparative phylogeography of two seastars and their ectosymbionts within the Coral Triangle. Mol Ecol 17:5276–5290

    PubMed  Google Scholar 

  8. Dou CY, Ye ZJ, Gao TX, Zhang XM, Ren YP, Lou D (2002) Study on reproduction biology of Sardinella zunasi Bleeker in the coastal waters of Qingdao. Trans Oceanol Limnol 2:24–32 (in Chinese with English abstract)

    Google Scholar 

  9. Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    CAS  PubMed  Google Scholar 

  11. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Google Scholar 

  12. Excoffier L, Smouse PE, Quattro M (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  13. FAO (Food and Agriculture Organization of the United Nations) (2021) Species fact sheets. http://www.fao/fihsery/species/2891/en. Accessed 19 Mar 2021

  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using bootstrap. Evolution 39:783–791

    PubMed  PubMed Central  Google Scholar 

  15. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gibbard P, van Kolfschoten T (2005) The Pleistocene and Holocene Epochs. In: Gradstein F, Ogg J, Smith A (eds) A geologic time scale 2004. Cambridge University Press, Cambridge, pp 441–452

    Google Scholar 

  17. Grant WS, Liu M, Gao TX, Yanagimoto T (2012) Limits of Bayesian skyline plot analysis of mtDNA sequences to infer historical demographies in Pacific herring (and other species). Mol Phylogenet Evol 65:203–212

    PubMed  Google Scholar 

  18. Gwak WS, Lee YD, Nakayama K (2015) Population structure and sequence divergence in the mitochondrial DNA control region of gizzard shad Konosirus punctatus in Korea and Japan. Ichthyol Res 62:379–385

    Google Scholar 

  19. Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annu Rev Evol Syst 40:291–310

    Google Scholar 

  20. Hirase S, Ikeda M, Kanno M, Kijima A (2012) Phylogeography of the intertidal goby Chaenogobius annularis associated with paleoenvironmental changes around the Japanese archipelago. Mar Ecol Prog Ser 450:167–179

    CAS  Google Scholar 

  21. Hirase S, Tezuka A, Nagano AJ, Kikuchi K, Iwasaki W (2020) Genetic isolation by distance in the yellowfin goby populations revealed by RAD sequencing. Ichthyol Res 67:98–104

    Google Scholar 

  22. Ikehara K, Ogawa T (2000) Regional catches of the fish species in Japan: fluctuations in the catches of marine fishes, shellfishes, and algae in Japan. Resource enhancement promotion division. Fisheries Agency of Japan, Tokyo (in Japanese)

    Google Scholar 

  23. Karakawa J (2001) Occurrence and distribution of eggs and larvae of Sardinella zunai in Bisan-seto and adjacent sea areas. Kaiyo Monthly 33:263–268 (in Japanese)

    Google Scholar 

  24. Katafuchi H, Kai Y, Nakabo T (2011) Genetic divergence in Ditrema jordani (Perciformes: Embiotocidae) from the Pacific coast of southern Japan, as inferred from mitochondrial DNA sequences. Ichthyol Res 58:90–94

    Google Scholar 

  25. Kitamura A, Takano O, Takata H, Omote H (2001) Late Pliocene–early Pleistocene paleoceanographic evolution of the Sea of Japan. Paleogeogr Paleoclimatol Paleoecol 172:81–98

    Google Scholar 

  26. Kobayashi I (1996) The sea of Japan in early and middle Pleistocene times. H G I Rep 5:263–285 (in Japanese with English abstract)

    Google Scholar 

  27. Kubota S (2010) Mamakari”, “Hira”, and relaxed “Sara. Nihon Bunkyou Shuppan, Okayama (in Japanese)

    Google Scholar 

  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X ver 2.0. Bioinformatics 23:2947–2948

    CAS  Google Scholar 

  30. Masuda F, Miyahara B, Hirotsu J, Irizuki T, Iwabuchi Y, Yoshikawa S (2000) Temporal variation of Holocene Osaka bay conditions estimated from a core in off-Kobe. J Geol Soc Jap 106:482–488 (in Japanese with English abstract)

    Google Scholar 

  31. Matsui S, Inui R, Kai Y (2014) Annotated checklist of gobioid fishes (Perciformes, Gobioidei) from Wakasa Bay, Sea of Japan. Bull Osaka Mus Nat Hist 68:1–25

    Google Scholar 

  32. Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375

    CAS  PubMed  Google Scholar 

  33. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254

    PubMed  Google Scholar 

  34. Nakabo T (2018) Sardinella zunasi. In: Nakabo T (ed) The natural history of the fishes of Japan. Shogakukan, Tokyo, p 82 (in Japanese)

    Google Scholar 

  35. Nakao K (2006) Fossil molluscan fauna in the lowere Pleistocene Kazusa formation, Shimabara Peninsula, northwestern Kyushu. Quat Res 45:113–121 (in Japanese with English abstract)

    Google Scholar 

  36. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  37. Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nei M, Miller JK (1990) A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics 125:873–879

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Palsbøll PJ, Bérubé M, Allendorf FW (2006) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    PubMed  Google Scholar 

  40. Polzin T, Daneshmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31:12–20

    Google Scholar 

  41. Rambaut A, Drummond J, Suchard M (2018) TRACER v1.7.1 http://tree.bio.ed.ac.uk/software/tracer/. Accessed 11 Dec 2018

  42. Ramírez-Amaro S, Picornell A, Arenas M, Castro JA, Massutí E, Ramon MM, Terrasa B (2018) Contrasting evolutionary patterns in populations of demersal sharks throughout the western Mediterranean. Mar Biol 165:3. https://doi.org/10.1007/s00227-017-3254-2

    Article  Google Scholar 

  43. Ravago-Gotanco RG, Juinio-Menéz MA (2010) Phylogeography of the mottled spinefoot Siganus fuscescens: Pleistocene divergence and limited genetic connectivity across the Philippine archipelago. Mol Ecol 19:4520–4534

    CAS  PubMed  Google Scholar 

  44. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sato M (2010) Anthropogenic decline of the peculiar fauna of estuarine mudflats in Japan. Plankton Benthos Res 5(Suppl):202–213

    Google Scholar 

  46. Sato M, Takita T (2000) Fauna and general environments in Ariake Sea. In: Sato M (ed) Life in Ariake Sea: biodiversity in tidal flats and estuaries. Kaiyu-sha, Tokyo, pp 10–35 (in Japanese)

    Google Scholar 

  47. Shimoyama S (1996) Origin of the low-land along the north coast of Ariake Bay, West Japan and changes of ancient shore-lines. Museum Kyushu: Crossroads Civiliz 14:25–34 (in Japanese)

    Google Scholar 

  48. Shimoyama S (2000) Geological history of Ariake Sea and establishment of indigenous species. In: Sato M (ed) Life in Ariake Sea: biodiversity in tidal flats and estuaries. Kaiyu-sha, Tokyo, pp 37–48 (in Japanese)

    Google Scholar 

  49. Shioya F, Mii T, Iwamoto N, Inouchi Y (2007) Late Pleistocene to Holocene variations in sea conditions within the Seto Inland Sea, offshore Matsuyama city, Japan. Earth Sci 61:103–115

    Google Scholar 

  50. Tajima F (1989a) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tajima F (1989b) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  53. Tanaka M (2009) Fishes growing in river estuarine basin in Ariake bay. In: Nature Conservation Committee of Ichthyological Society of Japan (ed) Fishes in estuarine and tidal flat ecosystems Status of endangered fishes in Ariake sound. Tokai University Press, Hadano, pp 189–206 (in Japanese)

    Google Scholar 

  54. Umitsu M (1991) Holocene sea-level changes and coastal evolution in Japan. Quat Res 30:187–196

    Google Scholar 

  55. Wang M, Zhang X, Yang T, Han Z, Yanagimoto T, Gao T (2008) Genetic diversity in the mtDNA control region and population structure in the Sardinella zunasi Bleeker. Afr J Biotechnol 7:4384–4392

    CAS  Google Scholar 

  56. Yamada U, Tokimura M, Horikawa H, Nakabo T (2007) Fishes and fisheries of the East China and the Yellow Seas. Tokai University Press, Hadano (in Japanese)

    Google Scholar 

  57. Yasuhara M (2008) Holocene ostracod paleobiogeography of the Seto Inland Sea, Japan: impact of opening of the strait. J Micropaleontol 27:111–116

    Google Scholar 

  58. Ying Y, Gao T, Lin L (2011a) Complex genetic structures of Sardinella zunasi in the Northwest Pacific detected by AFLP markers. Biochem Syst Ecol 39:339–345

    CAS  Google Scholar 

  59. Ying Y, Gao T, Miao Z (2011b) Genetic differentiation of Japanese sardinella (Sardinella zunasi) populations in the Northwest Pacific revealed by ISSR analysis. J Ocean Univ China 10:417–424

    Google Scholar 

Download references

Acknowledgements

We are grateful to Yukio Yoshida of Ariake Fisheries Cooperative Association, Akira Tohkairin, Yutaka Kumaki, and other staff of Fisheries Technology Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, and Yasuaki Kikuchi of Fishing Shop Sankairi (Yaidu, Shizuoka Prefecture) for collecting the specimens. This study is supported in part by research grant from Wesco Scientific Promotion Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naoki Yagishita.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 18 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yagishita, N., Kumashiro, M., Matsumoto, M. et al. Genetic population structure of Japanese sardinella Sardinella zunasi around Japan. Fish Sci 87, 805–816 (2021). https://doi.org/10.1007/s12562-021-01554-1

Download citation

Keywords

  • Sardinella zunasi
  • Japanese sardinella
  • Mitochondrial DNA
  • Control region
  • Population structure
  • Continental relict