Novel technique for definite blastomere inhibition and distribution of maternal RNA in sterlet Acipenser ruthenus embryo

Abstract

The cleavage pattern of a vertebrate’s embryo is either holoblastic (complete) or meroblastic (partial). Sturgeon and other basal bony fishes represent a transition of the cleavage pattern. To understand the transition, it is essential to develop an effective technique for the inhibition of specific blastomere cleavage. So far, various studies have demonstrated that diatom-derived polyunsaturated aldehyde (PUA), 2,4-decadienal (DD)—a model aldehyde for experimental studies—adversely affects the developing embryos of several aquatic species. In this study, we employed DD for inhibition of cleavage of a definite blastomere in sturgeon embryos under various conditions. The effective treatment was found to be a combination of DD injection (0.01 v/v) and visible light (44.86–91.15 W m−2). Notably, DD injection or light irradiation alone cannot inhibit cleavage. Furthermore, spatial RNA localization analysis using quantitative polymerase chain reaction (qPCR)-tomography revealed that the localized pattern of selected maternal messenger ribonucleic acids (mRNAs) remained constant along the animal–vegetal (A-V) axis, which suggests that RNA localization is completed by the end of oogenesis and that early embryonic cleavage is not required for A-V asymmetry preservation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    CAS  PubMed  Google Scholar 

  2. Ballard WW (1986) Stages and rates of normal development in the holostean fish, Amia calva. J Exp Zool 238:337–354

    Google Scholar 

  3. Ballard WW, Ginsburg AS (1980) Morphogenetic movements in acipenserid embryos. J Exp Zool 213:69–103

    Google Scholar 

  4. Baloch AR, Fu M, Rodina M, Metscher B, Tichopád T, Shah MA, Fran R, Psěnička M (2019) Delivery of iron oxide nanoparticles into primordial germ cells in sturgeon. Biomolecules 333:1–10

    Google Scholar 

  5. Bartsch P, Gemballa S, Piotrowski T (1997) The embryonic and larval development of Polypterus senegalus cuvier, 1829: Its staging with reference to external and skeletal features, behaviour and locomotory habits. Acta Zool 78:309–328

    Google Scholar 

  6. Bolker JA (1993) Gastrulation and mesoderm morphogenesis in the white sturgeon. J Exp Zool 266:116–131

    CAS  PubMed  Google Scholar 

  7. Bolker JA (1994) Comparison of gastrulation in frogs and fish. Integr Comp Biol 34:313–322

    Google Scholar 

  8. Bonaventura R, Poma V, Russo R, Zito F, Matranga V (2006) Effects of UV-B radiation on development and hsp70 expression in sea urchin cleavage embryos. Mar Biol 149:79–86

    CAS  Google Scholar 

  9. Buchholz DR, Singamsetty S, Karadge U, Williamson S, Langer CE, Elinson RP (2007) Nutritional endoderm in a direct developing frog: a potential parallel to the evolution of the amniote egg. Dev Dyn 236:1259–1272

    CAS  PubMed  Google Scholar 

  10. Caldwell GS, Olive PJWW, Bentley MG (2002) Inhibition of embryonic development and fertilization in broadcast spawning marine invertebrates by water soluble diatom extracts and the diatom toxin 2-trans,4-trans decadienal. Aquat Toxicol 60:123–137

    CAS  PubMed  Google Scholar 

  11. Caldwell GS, Bentley MG, Olive PJW (2004) First evidence of sperm motility inhibition by the diatom aldehyde 2 E, 4 E -decadienal. Mar Ecol Prog Ser 273:96–108

    Google Scholar 

  12. Castellano I, Ercolesi E, Romano G, Ianora A, Palumbo A, Palumbo A (2015) The diatom-derived aldehyde decadienal affects life cycle transition in the ascidian Ciona intestinalis through nitric oxide/ERK signalling. Open Biol 5:1–10

    CAS  Google Scholar 

  13. Chiu CH, Dewar K, Wagner GP, Takahashi K, Ruddle F, Ledje C, Bartsch P, Scemama JL, Stellwag E, Fried C, Prohaska SJ, Stadler PF, Amemiya CT (2004) Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. Genome 14:11–17

    CAS  Google Scholar 

  14. Cooper MS, Virta VC (2007) Evolution of gastrulation in the ray-finned (actinopterygian) fishes. J Exp Zool B Mol Dev Evol 308:591–608

    PubMed  Google Scholar 

  15. Cutignano A, D’Ippolito G, Romano G, Lamari N, Cimino G, Febbraio F, Nucci R, Fontana A (2006) Chloroplastic glycolipids fuel aldehyde biosynthesis in the marine diatom Thalassiosira rotula. ChemBioChem 7:450–456

    CAS  PubMed  Google Scholar 

  16. Fontana A, D’Ippolito G, Cutignano A, Romano G, Lamari N, Gallucci AM, Cimino G, Miralto A, Lanora A (2007) LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. ChemBioChem 8:1810–1818

    CAS  PubMed  Google Scholar 

  17. Ginsburg AS, Dettlaff TA (1991) The Russian sturgeon Acipenser Güldenstädti. Part I. Gametes and early development up to time of hatching. In: Dettlaff T.A., Vassetzky S.G. (eds) Animal Species for Developmental Studies. Springer, Boston, pp 15–65

  18. Haccard O, Sarcevic B, Lewellyn A, Hartley R, Roy L, Izumi T, Erikson E, Maller JL (1993) Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. Science 262:1262–1265

    CAS  PubMed  Google Scholar 

  19. Hansen E, Even Y, Genevière AM (2004) The α, β, γ,∂-unsaturated aldehyde 2-trans-4-trans-decadienal disturbs DNA replication and mitotic events in early sea urchin embryos. Toxicol Sci 81:190–197

    CAS  PubMed  Google Scholar 

  20. Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, Prince VE, Yang Z, Thomas MG, Coates MI (2007) A new time-scale for ray-finned fish evolution. Proc Royal Soc B 274:489–498

    CAS  Google Scholar 

  21. Ianora A, Zoologica S, Dohrn A (2003) The effects of diatoms on copepod reproduction: a review. Phycologia 42:351–363

    Google Scholar 

  22. Karasiewicz J, Sottyfiska MS (1986) Effects of cytochalasin B on the cleavage furrow in mouse blastomeres. Wilehm Roux Arch Dev Biol 195:137–141

    CAS  Google Scholar 

  23. Li FC, Wang J, Wu MM, Fan CM, Li X, He JM (2017) Mitogen-activated protein kinase phosphatases affect UV-B-induced stomatal closure via controlling NO in guard cells. Plant Physiol 173:760–770

    CAS  PubMed  Google Scholar 

  24. Long WL, Ballard WW (2001) Normal embryonic stages of the longnose gar Lepisosteus osseus. BMC Dev Biol 1:6. https://doi.org/10.1186/1471-213X-1-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495

    Google Scholar 

  26. Masui Y (2000) The elusive cytostatic factor in the animal egg. Nat Rev Mol Cell Biol 1:228–231

    CAS  PubMed  Google Scholar 

  27. Minarik M, Stundl J, Fabian P, Jandzik D, Metscher BD, Psenicka M, Gela D, Osorio-pérez A, Arias-rodriguez L, Horácek I, Cerny R (2017) Pre-oral gut contributes to facial structures in non-teleost fishes. Nature 547:209–212

    CAS  PubMed  Google Scholar 

  28. Miralto A, Barone G, Romano G, Poulet SA, Ianora A, Russo GL, Buttino I, Mazzarella G, Laablr M, Cabrini M, Glacobbe MG (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176

    CAS  Google Scholar 

  29. Okado H, Takahashi K (1988) A simple “neural induction” model with two interacting cleavage-arrested ascidian blastomeres. Proc Natl Acad Sci U S A 85:6197–6201

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pocherniaieva K, Psenicka M, Sidova M, Havelka M, Saito T, Sindelka R, Kaspar V (2018) Comparison of oocyte mRNA localization patterns in sterlet Acipenser ruthenus and African clawed frog Xenopus laevis. J Exp Zool B Mol Dev Evol 330:181–187

    CAS  PubMed  Google Scholar 

  31. Pohnert G (2000) Wound-activated chemical defense in unicellular planktonic algae. Angew Chem Int Ed 39:4352–4354

    CAS  Google Scholar 

  32. Poulet S, Lange M, Cordevant C, Adolph S, Cueff A, Pohnert G, Lumineau O (2007) Are volatile unsaturated aldehydes from diatoms the main line of chemical defence against copepods? Mar Ecol Prog Ser 245:33–45

    Google Scholar 

  33. Ravi V, Venkatesh B (2008) Rapidly evolving fish genomes and teleost diversity. Curr Opin Genet Dev 18:544–550

    CAS  PubMed  Google Scholar 

  34. Romano G (2003) A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J Exp Biol 206:3487–3494

    PubMed  Google Scholar 

  35. Romano G, Miralto A, Ianora A (2010) Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos. Mar drugs 8:950–967

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Romano G, Costantini M, Buttino I, Ianora A, Palumbo A (2011) Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS ONE 6(10):e25980. https://doi.org/10.1371/journal.pone.0025980

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Rooney RD, Tuazon PT, Meek WE, Carroll EJ, Hagen JJ, Gump EL, Monnig CA, Lugo T, Traugh JA (1996) Cleavage arrest of early frog embryos by the G protein-activated protein kinase PAK I. J Biol Chem 271:21498–21504

    CAS  PubMed  Google Scholar 

  38. Rutz J, Maxeiner S, Juengel E, Bernd A, Kippenberger S, Zöller N, Chun FKH, Blaheta RA (2019) Growth and proliferation of renal cell carcinoma cells is blocked by low curcumin concentrations combined with visible light irradiation. Int J Mol Sci 20(6):1464. https://doi.org/10.3390/ijms20061464

    CAS  Article  PubMed Central  Google Scholar 

  39. Sabharwal T, Sathasivan K, Mehdy MC (2017) Defense related decadienal elicits membrane lipid remodeling in the diatom Phaeodactylum tricornutum. PLoS ONE. https://doi.org/10.1371/journal.pone.0178761

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sagata N, Watanabe N, Vande Woude GF, Ikawa Y (1989) The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342:512–518

    CAS  PubMed  Google Scholar 

  41. Saito T, Psenicka M (2015) Novel technique for visualizing primordial germ cells in sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso). Biol Reprod 93:1–7

    CAS  Google Scholar 

  42. Saito T, Psěnička M, Goto R, Adachi S, Inoue K, Arai K, Yamaha E, Pšenička M, Goto R, Adachi S, Inoue K, Arai K, Yamaha E (2014) The origin and migration of primordial germ cells in sturgeons. PLoS ONE 9(2):e86861. https://doi.org/10.1371/journal.pone.0086861

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Saito T, Hilal G, Iegorova V, Rodina M, Psenicka M (2018) Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation. Biol Reprod 99:556–564

    PubMed  PubMed Central  Google Scholar 

  44. Sander K (1997a) “Mosaic work” and “assimilating effects” in embryogenesis: Wilhelm Roux’s conclusions after disabling frog blastomeres. In: Sander K et al (eds) Landmarks in Developmental Biology 1883–1924: Historical Essays from Roux's Archives. Springer, Berlin Heidelberg, pp 13-15. https://doi.org/10.1007/978-3-642-60492-8_5

  45. Sander K (1997b) Shaking a concept: Hans Driesch and the varied fates of sea urchin blastomeres. In: Sander K et al (eds) Landmarks in Developmental Biology 1883–1924: Historical Essays from Roux's Archives. Springer, Berlin Heidelberg, pp 29–31. https://doi.org/10.1007/978-3-642-60492-8_10

  46. Siegfried W, De L, Luchtel D, Bluemink JG (1973) The action of cytochalasin B during egg cleavage in Xenopus laevis: dependence on cell membrane permeability. Dev Biol 31:163–177

    Google Scholar 

  47. Sindelka R, Sidova M, Svec D, Kubista M (2010) Spatial expression profiles in the Xenopus laevis oocytes measured with qPCR tomography. Methods 51:87–91

    CAS  PubMed  Google Scholar 

  48. Takeuchi M, Takahashi M, Okabe M, Aizawa S (2009) Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol 332:90–102

    CAS  PubMed  Google Scholar 

  49. Takeuchi M, Okabe M, Aizawa S (2009) The genus Polypterus (Bichir); a fish group diverged at the stem of ray-finned fishes (Actinopterygii). Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.emo117

    Article  PubMed  Google Scholar 

  50. Tosti E, Romano G, Buttino I, Cuomo A, Ianora A, Miralto A (2003) Bioactive aldehydes from diatoms block the fertilization current in ascidian oocytes. Mol Reprod Dev 66:72–80

    CAS  PubMed  Google Scholar 

  51. Valles JM, Jordan WB, Mowry KL, Lin K, Denegre JM (2002) Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci U S A 95:14729–14732

    Google Scholar 

  52. Wishart DS, Tzur D, Knox C (2007) HMDB: The Human Metabolome Database. Nucleic Acids Res (2012-09-11). Metabocard for (E,E)-2,4-Decadienal (HMDB0036598). https://hmdb.ca/metabolites/HMDB0036598

  53. Yew N, Oskarsson M, Daar I, Blair DG, Vande Woude GF (1991) mos gene transforming efficiencies correlate with oocyte maturation and cytostatic factor activities. Mol Cell Biol 11:604–610

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao C, Zhang L, Shi D, Chi X, Yin D, Sun J, Ding J, Yang M, Chang Y (2018) Carryover effects of short-term UV-B radiation on fitness related traits of the sea urchin Strongylocentrotus intermedius. Ecotoxicol Environ Saf 164:659–664

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all lab members of the Laboratory of Germ Cells, Faculty of Fisheries and Protections of Waters, University of South Bohemia in Ceske Budejovice for their help during the experiments. The authors thank the Ministry of Education, Youth and Sports of the Czech Republic project CENAKVA (LM2018099), Biodiversity (CZ.02.1.01/0.0/0.0/16_025/0007370), Czech Science Foundation (20-23836S) and Grant Agency of the University of South Bohemia (036/2020/Z) for their financial support.

Author information

Affiliations

Authors

Contributions

Conceptualization: MAS, MP; methodology: MAS, VI; formal analysis and investigation: RF, MR, TT; writing—original draft preparation: MAS; writing—review and editing: MAS, TS, RŠ, ARB, MP, VI; supervision: MP.

Corresponding author

Correspondence to Mujahid Ali Shah.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file2 (MPEG 14760 KB)

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, M.A., Saito, T., Šindelka, R. et al. Novel technique for definite blastomere inhibition and distribution of maternal RNA in sterlet Acipenser ruthenus embryo. Fish Sci 87, 71–83 (2021). https://doi.org/10.1007/s12562-020-01481-7

Download citation

Keywords

  • Cleavage pattern inhibition
  • 2,4-Decadienal
  • Light irradiation
  • qPCR /tomography
  • RNA localization
  • Sterlet Acipenser ruthenus