Skip to main content
Log in

Isolation and molecular characterization of hemocyte sub-populations in kuruma shrimp Marsupenaeus japonicus

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

A Correction to this article was published on 05 July 2022

This article has been updated

Abstract

Crustacean hemocytes, which have usually been classified morphologically based on methods using Giemsa or May-Giemsa stains, have recently been categorized using monoclonal antibodies or marker genes. However, these latter techniques are not yet widely used, and different classification methods are used for hemocytes among laboratories. Therefore, we aimed to develop a molecular classification method that can be widely used by researchers. The method we have developed uses lectins and magnetic-activated cell sorting (MACS) to isolate sub-populations of hemocytes. Two lectins, wheat germ agglutinin (WGA) and tomato lectin (Lycopersicon esculentum lectin; LEL), characteristically bind to hemocytes, which allows them to be classified into three sub-populations. Furthermore, different sub-populations of hemocyte can be isolated by using LEL and MACS. These sub-populations were characterized as non-granular and granular hemocytes, and the accumulation patterns of the gene transcripts were consistent with the results of a functional analysis reported previously. The lectin-based hemocyte isolation method developed in this study has good reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arts JA, Cornelissen FH, Cijsouw T, Hermsen T, Savelkoul HF, Stet RJ (2007) Molecular cloning and expression of a Toll receptor in the giant tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 23:504–513

    CAS  PubMed  Google Scholar 

  • Bachère E, Gueguen Y, Gonzalez M, De Lorgeril J, Garnier J, Romestand B (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev 198:149–168

    PubMed  Google Scholar 

  • Bi WJ, Li DX, Xu YH, Xu S, Li J, Zhao XF, Wang JX (2015) Scavenger receptor B protects shrimp from bacteria by enhancing phagocytosis and regulating expression of antimicrobial peptides. Dev Comp Immunol 51:10–21

    CAS  PubMed  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    CAS  PubMed  Google Scholar 

  • Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH (2014) Cell surface protein glycosylation in cancer. Proteomics 14:525–546

    CAS  PubMed  Google Scholar 

  • Estrada N, Velázquez E, Rodríguez-Jaramillo C, Ascencio F (2016) Carbohydrate moieties and cytoenzymatic characterization of hemocytes in whiteleg shrimp Litopenaeus vannamei. Int J Cell Biol 2016:9032181

    PubMed  PubMed Central  Google Scholar 

  • Gabius HJ, Kaltner H, Kopitz J, André S (2015) The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. Trends Biochem Sci 40:360–376

    CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han-Ching Wang K, Tseng CW, Lin HY, Chen IT, Chen YH, Chen YM, Chen TY, Yang HL (2010) RNAi knock- down of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi. Dev Comp Immunol 34:49–58

    PubMed  Google Scholar 

  • Hernández-López J, Gollas-Galván T, Vargas-Albores F (1996) Activation of the prophenoloxidase system of the brown shrimp (Penaeus californiensis Holmes). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113:61–66

    Google Scholar 

  • Jiang S, Jia Z, Zhang T, Wang L, Qiu L, Sun J, Song L (2016) Functional characterisation of phagocytes in the Pacific oyster Crassostrea gigas. PeerJ 4:e2590

    PubMed  PubMed Central  Google Scholar 

  • Jiravanichpaisal P, Lee BL, Söderhäll K (2006) Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211:213–236

    CAS  PubMed  Google Scholar 

  • Johansson MW, Keyser P, Sritunyalucksana K, Söderhäll K (2000) Crustacean haemocytes and haematopoiesis. Aquaculture 191:45–52

    CAS  Google Scholar 

  • Kobata A (1992) Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 209:483–501

    CAS  PubMed  Google Scholar 

  • Kondo M, Matsuyama H, Yano T (1992) The opsonic effect of lectin on phagocytosis by hemocytes of kuruma prawn, Penaeus japonicus. Fish Pathol 27:217–222

    CAS  Google Scholar 

  • Kondo M, Itami T, Takahashi Y, Fujii R, Tomonaga S (1998) Ultrastructural and cytochemical characteristics of phagocytes in kuruma prawn. Fish Pathol 33:421–427

    CAS  Google Scholar 

  • Kondo M, Tomonaga S, Takahashi Y (2012) Granulocytes with cytoplasmic deposits of kuruma prawn. Aquac Sci 60:151–152

    Google Scholar 

  • Kondo M, Yasumoto S, Takahashi Y (2014) Morphological diversity of hemocytes on Crustacea. J Natl Fish Univ 63:33–48

    Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a referencegenome. BMC Bioinform 12:323

    CAS  Google Scholar 

  • Lin X, Soderhall I (2011) Crustacean hematopoiesis and the astakine cytokines. Blood 117:6417–6424

    CAS  PubMed  Google Scholar 

  • Lin Y, Zhan W, Li Q, Zhang Z, Wei X, Sheng X (2007) Ontogenesis of haemocytes in shrimp (Fenneropenaeus chinensis) studied with probes of monoclonal antibody. Dev Comp Immunol 31:1073–1081

    CAS  PubMed  Google Scholar 

  • Lin YC, Chen JC, Chen YY, Liu CH, Cheng W, Hsu CH, Tsui WC (2013) Characterization of white shrimp Litopenaeus vannamei integrin β and its role in immunomodulation by dsRNA-mediated gene silencing. Dev Comp Immunol 40:167–179

    CAS  PubMed  Google Scholar 

  • Maningas MBB, Kondo H, Hirono I (2013) Molecular mechanisms of the shrimp clotting system. Fish Shellfish Immunol 34:968–972

    CAS  PubMed  Google Scholar 

  • Marringa WJ, Krueger MJ, Burritt NL, Burritt JB (2014) Honey bee hemocyte profiling by flow cytometry. PLoS One 9:e108486

    PubMed  PubMed Central  Google Scholar 

  • Martin GG, Castro C, Moy N, Rubin N (2003) N-acetyl-D-glucosamine in crustacean hemocytes; possible functions and usefulness in hemocyte classification. Invertebr Biol 122:265–270

    Google Scholar 

  • Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K (1999) Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res 27:4436–4443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pipe R (1990) Differential binding of lectins to haemocytes of the mussel Mytilus edulis. Cell Tissue Res 261:261–268

    CAS  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    PubMed  PubMed Central  Google Scholar 

  • Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C (2010) Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329:1353–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez J, Boulo V, Mialhe E, Bachere E (1995) Characterisation of shrimp haemocytes and plasma components by monoclonal antibodies. J Cell Sci 108:1043–1050

    CAS  PubMed  Google Scholar 

  • Rosa RD, Barracco MA (2010) Antimicrobial peptides in crustaceans. Invertebr Surviv J 7:262–284

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Söderhäll I (2016) Crustacean hematopoiesis. Dev Comp Immunol 58:129–141

    PubMed  Google Scholar 

  • Söderhäll K, Smith VJ (1983) Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol 7:229–239

    PubMed  Google Scholar 

  • Sung HH, Sun R (2002) Use of monoclonal antibodies to classify hemocyte subpopulations of tiger shrimp (Penaeus monodon). J Crustac Biol 22:337–344

    Google Scholar 

  • Sung HH, Chang HJ, Her CH, Chang JC, Song YL (1998) Phenoloxidase activity of hemocytes derived from Penaeus monodon and Macrobrachium rosenbergii. J Invertebr Pathol 71:26–33

    CAS  PubMed  Google Scholar 

  • Sung H, Wu P, Song Y (1999) Characterisation of monoclonal antibodies to haemocyte subpopulations of tiger shrimp (Penaeus monodon): immunochemical differentiation of three major haemocyte types. Fish Shellfish Immunol 9:167–179

    Google Scholar 

  • Tassanakajon A, Somboonwiwat K, Supungul P, Tang S (2013) Discovery of immune molecules and their crucial functions in shrimp immunity. Fish Shellfish Immunol 34:954–967

    CAS  PubMed  Google Scholar 

  • Tirouvanziam R, Davidson CJ, Lipsick JS, Herzenberg LA (2004) Fluorescence-activated cell sorting (FACS) of Drosophila hemocytes reveals important functional similarities to mammalian leukocytes. Proc Natl Acad Sci USA 101:2912–2917

    CAS  PubMed  PubMed Central  Google Scholar 

  • van de Braak CB, Taverne N, Botterblom MH, van der Knaap WP, Rombout JH (2000) Characterisation of different morphological features of black tiger shrimp (Penaeus monodon) haemocytes using monoclonal antibodies. Fish Shellfish Immunol 10:515–530

    PubMed  Google Scholar 

  • Wang XW, Wang JX (2013) Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish Shellfish Immunol 34:981–989

    PubMed  Google Scholar 

  • Wang XW, Zhao XF, Wang JX (2014) C-type lectin binds to β-integrin to promote hemocytic phagocytosis in an invertebrate. J Biol Chem 289:2405–2414

    CAS  PubMed  Google Scholar 

  • Winotaphan P, Sithigorngul P, Muenpol O, Longyant S, Rukpratanporn S, Chaivisuthangkura P, Sithigorngul W, Petsom A, Menasveta P (2005) Monoclonal antibodies specific to haemocytes of black tiger prawn Penaeus monodon. Fish Shellfish Immunol 18:189–198

    CAS  PubMed  Google Scholar 

  • Xing J, Chang Y, Tang X, Sheng X, Zhan W (2017) Separation of haemocyte subpopulations in shrimp Fenneropenaeus chinensis by immunomagnetic bead using monoclonal antibody against granulocytes. Fish Shellfish Immunol 60:114–118

    CAS  PubMed  Google Scholar 

  • Yang LS, Yin ZX, Liao JX, Huang XD, Guo CJ, Weng SP, Chan SM, Yu XQ, He JG (2007) A toll receptor in shrimp. Mol Immunol 44:1999–2008

    CAS  PubMed  Google Scholar 

  • Yang CC, Lu CL, Chen S, Liao WL, Chen SN (2015) Immune gene expression for diverse haemocytes derived from pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 44:265–271

    CAS  PubMed  Google Scholar 

  • Zhan W, Wei X, Xing J, Zhang Z (2008) Characterization of monoclonal antibodies to haemocyte types of the shrimp, Fenneropenaeus chinensis. Crustaceana 81:931–942

    Google Scholar 

  • Zhang Y, Wang L, Wang L, Wu N, Zhou Z, Song L (2012) An integrin from shrimp Litopenaeus vannamei mediated microbial agglutination and cell proliferation. PLOS ONE 7:e40615

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for a JSPS research fellow (grant no. 16J08185) to K. Koiwai and a Grant-in-Aid for Scientific Research (A) (grant no. 15H02462) to I. Hirono. All the sequences from total, LELDim and LELStrong hemocytes are archived together with the raw data at the DDBJ Sequence Read Archive under accession no. DRA007926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Hirono.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with regard to the contents of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koiwai, K., Kondo, H. & Hirono, I. Isolation and molecular characterization of hemocyte sub-populations in kuruma shrimp Marsupenaeus japonicus. Fish Sci 85, 521–532 (2019). https://doi.org/10.1007/s12562-019-01311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-019-01311-5

Keywords

Navigation