Skip to main content
Log in

Small-subunit ribosomal DNA sequencing analysis of dietary shifts during gonad maturation in wild black Amur bream (Megalobrama terminalis) in the lower reaches of the Pearl River

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Black Amur bream (Megalobrama terminalis) is an economically important indigenous species that dominates the fish community in the lower reaches of the Pearl river. We used small subunit ribosomal DNA (18S rDNA) sequencing to assess the intestinal contents of black Amur bream at four independent developmental stages (stages II, III, IV, and V). This represents a new approach to the analysis of fish diets in the field. The results showed that Eunicida, Tubificina, unclassified Demospongiae, unclassified Insecta, unclassified Hexactinellida, unclassified Bivalvia and Monogononta constitute the predominant primary food sources of black Amur bream. Interestingly, a shift in the diet of black Amur bream was observed upon the fish reaching a standard length of around 225 ± 19.3 mm during gonad development from stage III to IV. A reduction in the consumption of Demospongiae and Rotifera, and an increase in the consumption of Annelida (mostly Eunicida) and Tubificina, were observed. Stage III in the developmental process is a transition phase in relation to dietary shift, which exhibits the food preferences both of juveniles and adults. We also observed that food items that were detected in the foregut were also present in the hindgut, indicating that 18S rDNA amplification of fecal matter could be used for dietary analysis in fish in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a, b

Similar content being viewed by others

References

  1. Carreon-Martinez L, Heath DD (2010) Revolution in food web analysis and trophic ecology: diet analysis by DNA and stable isotope analysis. Mol Ecol 19(1):25–27

    Article  CAS  PubMed  Google Scholar 

  2. Embong Z, Wan Hitam WH, Yean CY, Rashid NH, Kamarudin B, Abidin SK, Osman S, Zainuddin ZF, Ravichandran M (2008) Specific detection of fungal pathogens by 18S rRNA gene PCR in microbial keratitis. BMC Ophthalmol 8(1):1–8

    Article  Google Scholar 

  3. Faria DG, Lee MD, Lee JB, Lee J, Chang M, Youn SH, Suh YS, Ki JS (2014) Molecular diversity of phytoplankton in the East China Sea around Jeju Island (Korea), unraveled by pyrosequencing. J Oceanogr 70(1):11–23

    Article  Google Scholar 

  4. Li Q, Wang C, Zhang Q, Tang C, Li N, Ruan B, Li J (2012) Use of 18S ribosomal DNA polymerase chain reaction-denaturing gradient gel electrophoresis to study composition of fungal community in 2 patients with intestinal transplants. Hum Pathol 43(8):1273–1281

    Article  PubMed  Google Scholar 

  5. Amaral-Zettler LA, Mccliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4(7):e6372

    Article  PubMed  PubMed Central  Google Scholar 

  6. François P, Bruce ED, William OCS, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21(8):1931–1950

    Article  Google Scholar 

  7. Corse E, Valladares S, Planas M, Chamorro A, Pintado J (2015) Analysis of the diet of the long-snouted seahorse Hippocampus guttulatus by 18S rDNA amplification of prey in faeces. Aquacult Nutr 21(5):528–540

    Article  CAS  Google Scholar 

  8. Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11(4):627–641

    Article  CAS  PubMed  Google Scholar 

  9. Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator–prey food-webs. Funct Ecol 19(5):751–762

    Article  Google Scholar 

  10. Corse E, Costedoat C, Chappaz R, Pech N, Martin JF, Gilles A (2010) A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces. Mol Ecol Resour 10(1):96–108

    Article  CAS  PubMed  Google Scholar 

  11. Burger JC, Patten MA, Rotenberry JT, Redak RA (1999) Foraging ecology of the California gnatcatcher deduced from fecal samples. Oecologia 120(2):304–310

    Article  PubMed  Google Scholar 

  12. Guo Z, Liu J, Lek S, Li Z, Zhu F, Tang J, Britton R, Cucherousset J (2017) Coexisting invasive gobies reveal no evidence for temporal and trophic niche differentiation in the sublittoral habitat of Lake Erhai, China. Ecol Freshwater Fish 26(1):42–52

    Article  Google Scholar 

  13. Maloy AP, Culloty SC, Bolton-Warberg M, Fitzgerald R, Slater JW (2010) Molecular identification of laser-dissected gut contents from hatchery-reared larval cod, Gadus morhua: a new approach to diet analysis. Aquacult Nutr 17(5):536–541

    Article  Google Scholar 

  14. Hardy C, Krull E, Hartley D, Oliver R (2010) Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol Ecol 19(19):197–212

    Article  CAS  PubMed  Google Scholar 

  15. Yu L, Zhang W, Liu L, Yang J (2015) Determining microeukaryotic plankton community around Xiamen Island, southeast China, using Illumina MiSeq and PCR-DGGE techniques. PLoS One 10(5):e0127721

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shehzad W, Riaz T, Nawaz MA, Miquel C, Poillot C, Shah SA, Pompanon F, Coissac E, Taberlet P (2012) Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol Ecol 21(8):1951–1965

    Article  CAS  PubMed  Google Scholar 

  17. Garros C, Ngugi N, Githeko AE, Tuno N, Yan G (2008) Gut content identification of larvae of the Anopheles gambiae complex in western Kenya using a barcoding approach. Mol Ecol Resour 8(3):512–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Billard R (1986) Spermatogenesis and spermatology of some teleost fish species. Reprod Nutr Dev 26(4):877–920

    Article  Google Scholar 

  19. Clelland E, Peng C (2009) Endocrine/paracrine control of zebrafish ovarian development. Mol Cell Endocrinol 312(1):42–52

    Article  CAS  PubMed  Google Scholar 

  20. Eloranta AP, Kahilainen KK, Jones RI (2010) Seasonal and ontogenetic shifts in the diet of Arctic charr Salvelinus alpinus in a subarctic lake. J Fish Biol 77(1):80–97

    Article  CAS  PubMed  Google Scholar 

  21. Specziár A, Rezsu ET (2009) Feeding guilds and food resource partitioning in a lake fish assemblage: an ontogenetic approach. J Fish Biol 75(1):247–267

    Article  PubMed  Google Scholar 

  22. Barbini SA, Scenna LB, Figueroa DE, Cousseau MB, Astarloa JMDD (2010) Feeding habits of the Magellan skate: effects of sex, maturity stage, and body size on diet. Hydrobiologia 641(1):275–286

    Article  Google Scholar 

  23. Li L, Wei Q, Wu J, Zhang H, Liu Y, Xie X (2015) Diet of Leptobotia elongata revealed by stomach content analysis and inferred from stable isotope signatures. Environ Biol Fish 98(8):1965–1978

    Article  Google Scholar 

  24. Owens RW, Dittman DE (2003) Shifts in the diets of slimy sculpin (Cottus cognatus) and lake whitefish (Coregonus clupeaformis) in lake Ontario following the collapse of the burrowing amphipod Diporeia. Aquat Ecosyst Health Manage 6(3):311–323

    Article  Google Scholar 

  25. Tan X, Li X, Chang J, Tao J (2009) Acoustic observation of the spawning aggregation of Megalobrama hoffmanni in the Pearl River. J Freshwater Ecol 24(2):293–299

    Article  Google Scholar 

  26. Feng Q, Wang J, You B, Pang SX, Liu S (1986) Survey reports on the spawning grounds of Megalobrama hoffmanni. Freshwater Fish 134(6):1–5 (in Chinese)

    Google Scholar 

  27. Tan X, Li X, Lin J, Zhou D, Gao X, Li J (2009) Ecological differentiation between two breeding populations of Megalobrama hoffmanni in the Pearl River based on hydro-acoustic research. Acta Ecol Sin 29(4):1756–1762 (in Chinese)

    Google Scholar 

  28. Li Y, Li X, Yang J, Lek S, Shuai F, Li J (2014) Effect of Pearl River closed fishing on Megalobrama hoffmanni recruitment stock. J Fish China 38(4):502–508 (in Chinese)

    Google Scholar 

  29. You B, Feng Q, Wang J, Pang S, Liu S (1987) Primary study on the reproductive biology of Megalobrama hoffmanni in Xijiang river. Freshwater Fish 5:7–11 (in Chinese)

    Google Scholar 

  30. Lu K (1990) Fisheries Resources in Pearl River. Guangdong Science and Technology, Guangdong (in Chinese)

    Google Scholar 

  31. Anonymous (2012) List of national conservation zones of aquatic germplasm resources. New Econ 12:89

    Google Scholar 

  32. Li J, Li X, Jia X, Li Y, He M, Tan X, Wang C, Jiang W (2010) Evolvement and diversity of fish community in Xijiang River. J Fish Sci China 17(2):298–311 (in Chinese)

    Google Scholar 

  33. Tan X, Li X, Tao J, Lai Z, Luo J, Li J, Wang C (2008) Hydroacoustic measurement of spawning stocks of Megalobrama hoffmanni in Qingpitang reach of Xijiang River. Chin J Ecol 27(5):785–790 (in Chinese)

    Google Scholar 

  34. Yang W, Lai Z, Pang S, Wei T, Gao Y, Wang C, Sang C (2011) Trophic status and assessment in Megalobrama hoffmanni spawning grounds of Xijiang River. J Hydroecol 32(5):55–58 (in Chinese)

    Google Scholar 

  35. He M, Li X, Tan X, Li J, Wang C, Luo J, Lin J (2007) Age determination and the growth of Megalobrama hoffmanni in Xijiang River. Freshwater Fish 37(3):54–58 (in Chinese)

    Google Scholar 

  36. Anonymous (1985) Fish biology of economic species in river (II). In: Pearl River Fisheries Research Institute CAFS (ed) Research report on the investigation of fishery resources in the Pearl River. Editorial Committee of Pearl River Fishery Resources Investigation, Guangzhou, pp 188–223

    Google Scholar 

  37. Wang C, Baehr C, Lai Z, Gao Y, Lek S, Li X (2014) Exploring temporal trend of morphological variability of a dominant diatom in response to environmental factors in a large subtropical river. Ecol Inform 29:1–8

    Google Scholar 

  38. Ni J, Yan Q, Yu Y, Zhang T (2014) Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol 87(3):704–714

    Article  CAS  PubMed  Google Scholar 

  39. Devlaming V, Grossman G, Chapman F (1982) On the use of the gonosomatic index. Comp Biochem Physiol A Physiol 73(1):31–39

    Article  Google Scholar 

  40. Selman K, Wallace RA, Sarka A, Qi X (1993) Stages of oocyte development in the zebrafish, Brachydanio rerio. J Morphol 218(2):203–224

    Article  Google Scholar 

  41. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219 (PMID:23193283)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jaccard P (1908) Nouvelles recherches sur la distribution floral. Bull Soc Vard Sci Nat 44:223–270

    Google Scholar 

  43. Koen Alonso M, Alberto Crespo E, Aníbal García N, Noemí Pedraza S, Ariel Mariotti P, Judith Mora N (2002) Fishery and ontogenetic driven changes in the diet of the spiny dogfish, Squalus acanthias, in Patagonian Waters, Argentina. Environ Biol Fish 63(2):193–202

    Article  Google Scholar 

  44. Schoener TW (1974) Resource partitioning in ecological communities. Science 185(4145):27–39

    Article  CAS  PubMed  Google Scholar 

  45. Pan B, Wang Z, He X (2011) Studies on assemblage characteristics of macrozoobenthos in the West River. Acta Hydrobiol Sin 35(5):851–856 (in Chinese)

    Google Scholar 

  46. Deagle BE, Tollit DJ, Jarman SN, Hindell MA, Trites AW, Gales NJ (2005) Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions. Mol Ecol 14(6):1831–1842

    Article  CAS  PubMed  Google Scholar 

  47. Monchy S, Grattepanche JD, Breton E, Meloni D, Sanciu G, Chabé M, Delhaes L, Viscogliosi E, Sime-Ngando T, Christaki U (2012) Microplanktonic community structure in a coastal system relative to a Phaeocystis bloom inferred from morphological and tag pyrosequencing methods. PLoS One 7(6):e39924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liao G (1997) Propagation protection of Megalobrama hoffmanni in the Pearl River. Guangdong Sci Technol 6:23–24 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (31602166), and the Natural Science Foundation of Guangdong Province (2016A030313147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Li, J., Li, Y. et al. Small-subunit ribosomal DNA sequencing analysis of dietary shifts during gonad maturation in wild black Amur bream (Megalobrama terminalis) in the lower reaches of the Pearl River. Fish Sci 83, 955–965 (2017). https://doi.org/10.1007/s12562-017-1123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-017-1123-z

Keywords

Navigation