Fisheries Science

, Volume 83, Issue 3, pp 413–423 | Cite as

Estimation of heritability of vertebral number in chum salmon Oncorhynchus keta

  • Daisei Ando
  • Mizue Murooka
  • Kazutaka Shimoda
  • Hirofumi Hayano
  • Yoshitaka Sasaki
  • Yasuyuki Miyakoshi
  • Masamichi Nakajima
Original Article Biology


Hereditary causes of variation in the vertebral number of chum salmon were analyzed to estimate heritability for populations in the Chitose and Shikiu Rivers, Hokkaido Island, northern Japan. A total of 70 families were produced by diallel cross mating and then heritability was estimated using two statistical tests: a two-way ANOVA and a parent-offspring regression. Heritability estimates ranged from 0.26 to 1.91 and showed a strong correlation between the values from the two different tests. Estimates from female components were substantially higher than those from male components, which can be attributed to the maternal effect. Heritability in the Shikiu River population was shown to be higher than that in the Chitose River population. These results indicate that the heritability of vertebral number in chum salmon is generally high, and also that vertebral number is controlled by hereditary causes.


Maternal effect Meristic characters Local population Stock enhancement Salmon hatchery 



Chum salmon adults and fertilized eggs used in this study were generously provided by the Nihonkai Salmon Propagation Association and the Iburi District Salmon Propagation Association. Special thanks to Mr. Sakurai Yosuke in the Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, for help with the breeding and management of the chum salmon fry.


  1. 1.
    Garside ET (1966) Developmental rate and vertebral number in salmonids. J Fish Res Bd Can 23:1537–1551CrossRefGoogle Scholar
  2. 2.
    Ali MY, Lindsey CC (1974) Heritable and temperature-induced meristic variation in the medaka, Orizias latipes. Can J Zool 52:959–976CrossRefPubMedGoogle Scholar
  3. 3.
    Kirpichnikov VS (1981) Genetic bases of fish selection. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Beacham TD, Murray CB (1986) The effect of spawning time and incubation temperature on meristic variation in chum salmon (Oncorhynchus keta). Can J Zool 64:45–48CrossRefGoogle Scholar
  5. 5.
    Lindsey CC (1988) Factors controlling meristic variation. In: Hoar WS, Randall DJ (eds) Fish physiology, vol XI, Part B. Academic Press, San Diego, pp 197–274Google Scholar
  6. 6.
    Beacham TD (1990) A genetic analysis of meristic and morphometric variation in chum salmon (Oncorhynchus keta) at three different temperatures. Can J Zool 68:225–229CrossRefGoogle Scholar
  7. 7.
    Tåning ÅV (1952) Experimental study of meristic characters in fishes. Biol Rev 271:169–193CrossRefGoogle Scholar
  8. 8.
    Swain DP (1988) Evidence of selection for vertebral number of fry in peamouth, Mylocheilus caurinus. Can J Fish Aquat Sci 45:1279–1290CrossRefGoogle Scholar
  9. 9.
    Reimchen TE, Cox KD (2016) Differential temperature preferences of vertebral phenotypes in Gasterosteus. Can J Zool 94:1–5CrossRefGoogle Scholar
  10. 10.
    Barlow GW (1961) Causes and significance of morphological variation in fishes. Syst Zool 10:105–117CrossRefGoogle Scholar
  11. 11.
    McDowall RM (2008) Jordan’s and other ecological rules, and the vertebral number in fishes. J Biogeogr 35:501–508CrossRefGoogle Scholar
  12. 12.
    Gomez C, Özbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquié O (2008) Control of segement number in vertebrate embryos. Nature 454:335–339CrossRefPubMedGoogle Scholar
  13. 13.
    Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58:455–476CrossRefPubMedGoogle Scholar
  14. 14.
    Nichols KM, Wheeler PA, Thorgaard GH (2004) Quantitative trait loci analyses for meristic traits in Oncorhynchus mykiss. Environ Biol Fish 69:317–331CrossRefGoogle Scholar
  15. 15.
    Berner D, Moser D, Roesti M, Buescher H, Salzburger W (2014) Genetic architecture of skeletal evolution in European lake and stream stickleback. Evolution 68:1792–1805CrossRefPubMedGoogle Scholar
  16. 16.
    Kimura T, Shinya M, Naruse K (2012) Genetic analysis of vertebral regionalization and number in medaka (Oryzias latipes) inbred lines. G3: Genes Genomes Genetics 2:1317–1323CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Miyakoshi Y, Nagata M, Kitada S, Kaeriyama M (2013) Historical and current hatchery programs and management of chum salmon in Hokkaido, northern Japan. Rev Fish Sci 21:469–479CrossRefGoogle Scholar
  18. 18.
    Beacham TD, Sato S, Urawa S, Le KD, Wetklo M (2008) Population structure and stock identification of chum salmon Oncorhynchus keta from Japan determined by microsatellite DNA variation. Fish Sci 74:983–994CrossRefGoogle Scholar
  19. 19.
    Ando D, Shinriki Y, Sasaki Y, Yasutomi R, Misaka N, Mizuno S, Miyakoshi Y, Nakajima M (2015) Regional differences in vertebral number of chum salmon fry. Nippon Suisan Gakkaishi 81:843–845 (in Japanese) CrossRefGoogle Scholar
  20. 20.
    Ando D, Watanabe T, Shimoda K (2017) Geographical variation in vertebral number of chum salmon fry on Hokkaido Island, Japan. Aquacult Sci 65:89–91 (in Japanese with English abstract)Google Scholar
  21. 21.
    Ando D, Shimoda K, Shinriki Y, Urabe H, Aoyama T, Nakajima M (2010) Inflexibility of vertebral number in chum salmon Oncorhynchus keta. Fish Sci 76:761–767CrossRefGoogle Scholar
  22. 22.
    Wada K (1979) Heredity of quantitative traits. In: Fujino K et al (eds) Fish genetics and breeding science for aquatic animals. Kouseisha-Kouseikaku, Tokyo, pp 7–26 (in Japanese) Google Scholar
  23. 23.
    Alho JS, Leinonen T, Merilä J (2011) Inheritance of vertebral number in the three-spined stickleback (Gasterosteus aculeatus). PLoS ONE 6:1–6CrossRefGoogle Scholar
  24. 24.
    Ando D, Mano S, Shimoda K, Shinriki Y, Koide N, Nakajima M (2008) Heritability estimates by intra-sire regression of offspring on dam and half-sib analysis of the number of gill raker and vertebrae in masu salmon, Oncorhynchus masou masou. Fish Genet Breed Sci 38:87–96Google Scholar
  25. 25.
    Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauser, SunderlandGoogle Scholar
  26. 26.
    Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Peason, EssexGoogle Scholar
  27. 27.
    Herminda M, Fernández C, Amaro R, Miguel ES (2002) Heritability and “evolvability” of meristic characters in a natural population of Gasterosteus aculeatus. Can J Zool 80:532–541CrossRefGoogle Scholar
  28. 28.
    Ando D, Sasaki Y, Miyakoshi Y, Yasutomi R, Iijima A, Shimoda K, Nakajima M (2015) Differences in the growth patterns of fry among chum salmon Oncorhynchus keta families. Aquacult Sci 63:89–98 (in Japanese with English abstract) Google Scholar
  29. 29.
    Ando D, Shimoda K, Hayano H, Miyakoshi Y (2016) The effect of age of males on the early growth of chum salmon fry. Nippon Suisan Gakkaishi 82:298–305 (in Japanese with English abstract) CrossRefGoogle Scholar
  30. 30.
    Kubo T, Kobayashi T (1953) Some populations of dog salmon [Oncorhynchus keta (Walbaum)] in Ishikari River system, Hokkaido, and the numbers of their vertebrae and lateral-line scales. Nippon Suisan Gakkaishi 19:297–302 (in Japanese with English abstract) CrossRefGoogle Scholar
  31. 31.
    Fujita K (1990) The caudal skeleton of teleostean fishes. Tokai University Press, Tokyo (in Japanese)Google Scholar
  32. 32.
    Kudo H, Inoguchi N, Kijima A (2001) Estimation of heritability for growth by factorial mating system in rainbow trout (Oncorhynchus mykiss). Suisanzoshoku 49:243–251 (in Japanese with English abstract) Google Scholar
  33. 33.
    Ando D, Shinriki Y, Miyakoshi Y, Urabe H, Yasutomi R, Aoyama T, Sasaki Y, Nakajiama M (2011) Seasonal variations in and effect of incubation water temperature on vertebral number in naturally spawning chum salmon Oncorhynchus keta. Fish Sci 77:799–807CrossRefGoogle Scholar
  34. 34.
    Kubo T (1956) Peculiarity of population of chum salmon in the Shiriuchi River in respect to the vertebral count. Bull Fac Fish Hokkaido Univ 6:266–270 (in Japanese with English abstract) Google Scholar
  35. 35.
    Vernon EH (1957) Morphometric comparison of three races of kokanee (Oncorhynchus nerka) within a large British Columbia lake. J Fish Res Bd Can 14:573–598CrossRefGoogle Scholar
  36. 36.
    Seymour A (1959) Effects of temperature upon the formation of vertebrae and fin rays in young Chinook salmon. Trans Am Fish Soc 88:58–69CrossRefGoogle Scholar
  37. 37.
    MacGregor RB, MacCrimmon HR (1977) Evidence of genetic and environmental influences on meristic variation in the rainbow trout, Salmo gairdneri Richardson. Env Biol Fish 2:25–33CrossRefGoogle Scholar
  38. 38.
    Winter GW, Schreck CB, McIntyre JD (1980) Meristic comparison of four stocks of steelhead trout (Salmo gairdneri). Copeia 1980:160–162CrossRefGoogle Scholar
  39. 39.
    Mosseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197CrossRefGoogle Scholar
  40. 40.
    Morita K, Takahashi S, Ohkuma K, Nagasawa T (2013) Estimation of the proportion of wild chum salmon Oncorhynchus keta in Japanese hatchery rivers. Nippon Suisan Gakkaishi 79:206–213 (in Japanese with English abstract) CrossRefGoogle Scholar
  41. 41.
    Leary RF, Allendorf FW, Knudsen KL (1985) Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39:308–314CrossRefGoogle Scholar
  42. 42.
    Ando D, Mano S, Koide N, Nakajima M (2008) Estimation of heritability and genetic correlation of number of abdominal and caudal vertebrae in masu salmon. Fish Sci 74:293–298CrossRefGoogle Scholar
  43. 43.
    Nakajima M, Ando D, Kijima A, Fujio Y (1996) Heritability of vertebral number in the coho salmon Oncorhynchus kisutch. Tohoku J Agric Res 47(1):29–36Google Scholar
  44. 44.
    Ando D, Sato S, Shinriki Y, Yasutomi R, Aruga N, Nakajima M (2014) Relationship between vertebral number and body size in naturally spawning chum salmon in the Kotonihassamu River. Fish Genet Breed Sci 43:29–33 (in Japanese with English abstract) Google Scholar
  45. 45.
    Kanis E, Refstie T, Gjedrem T (1976) A genetic analysis of eggs, alevin and fry mortality in salmon (Salmo salar), sea trout (Salmo trutta) and rainbow trout (Salmo gairdneri). Aquaculture 8:259–268CrossRefGoogle Scholar
  46. 46.
    Nagler JJ, Parsons JE, Cloud JG (2000) Single pair mating indicates maternal effects on embryo survival in rainbow trout, Oncorhynchus mykiss. Aquaculture 184:177–183CrossRefGoogle Scholar
  47. 47.
    Dentry W, Lindsey CC (1978) Vertebral variation in zebrafish (Brachydanio rerio) related to the prefertilization temperature history of their parents. Can J Zool 56:280–283CrossRefGoogle Scholar
  48. 48.
    Swain DP, Lindsey CC (1986) Meristic variation in a clone of the cyprinodont fish Rivulus marmoratus related to temperature history of the parents and of the embryos. Can J Zool 64:1444–1455CrossRefGoogle Scholar
  49. 49.
    Ando D, Shinriki Y, Shimoda K, Yasutomi R, Sasaki Y, Miyakoshi Y, Nakajima M (2014) Effects of spawning time on the variation of vertebral number in chum salmon Oncorhynchus keta. Nippon Suisan Gakkaishi 80:191–200 (in Japanese with English abstract) CrossRefGoogle Scholar
  50. 50.
    Hokkaido Fish Hatchery (1990) Development for fish genetics and breeding science using gynogenesis. Hokkaido Fish Hatchery, Eniwa, pp 149–151 (in Japanese)Google Scholar

Copyright information

© Japanese Society of Fisheries Science 2017

Authors and Affiliations

  • Daisei Ando
    • 1
  • Mizue Murooka
    • 2
  • Kazutaka Shimoda
    • 3
  • Hirofumi Hayano
    • 4
  • Yoshitaka Sasaki
    • 2
  • Yasuyuki Miyakoshi
    • 2
  • Masamichi Nakajima
    • 5
  1. 1.Fisheries Research DepartmentHokkaido Research OrganizationHokkaidoJapan
  2. 2.Salmon and Freshwater Fisheries Research InstituteHokkaido Research OrganizationHokkaidoJapan
  3. 3.Donan Research Branch, Salmon and Freshwater Fisheries Research InstituteHokkaido Research OrganizationHokkaidoJapan
  4. 4.Doto Research Branch, Salmon and Freshwater Fisheries Research InstituteHokkaido Research OrganizationHokkaidoJapan
  5. 5.Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan

Personalised recommendations