Fisheries Science

, Volume 83, Issue 3, pp 425–432 | Cite as

Molecular identification of macroalgal fragments in gut contents of the sea urchin Hemicentrotus pulcherrimus

Original Article Biology
  • 192 Downloads

Abstract

In order to improve the efficiency of stock enhancement programs for the sea urchin Hemicentrotus pulcherrimus, information on food algal species, which affect growth and gonad production greatly, is necessary. Since it is difficult to identify species from the macroalgal fragments within the gut contents of the sea urchin by microscopic observation, we tried to apply a DNA barcoding method for gut contents analysis. We used a partial rbcL gene sequence for taxonomic section and newly designed primer sets, respectively, for brown algae and for red algae. Direct sequencing of the PCR products was carried out. Species identification was based on the phylogenetic relationship. We could objectively identify four species and two taxonomic groups (genus or family) in brown algae, and two species and four taxonomic groups in red algae from the gut contents. Sargassum hemiphyllum was the most abundant brown alga in the gut contents but was not dominant in the study site. The result showed the importance of identification to the species level. In addition, red algal epiphytes were detected with brown algal fragments. The DNA barcoding method will enable the researchers to verify the important role of epiphytes as a potential food source.

Keywords

rbcDNA barcoding Gut content analysis, macroalgae Sea urchin Hemicentrotus pulcherrimus 

Notes

Acknowledgements

We thank the Wakasamikata Fisheries Cooperative for helping and cooperation with our sampling.

References

  1. 1.
    Vadas RL Sr, Beal B, Dowling T, Fegley JC (2000) Experimental field tests of natural algal diets on gonad index and quality in the green sea urchin, Strongylocentrotus droebachiensis: a case for rapid summer production in post-spawned animals. Aquaculture 182:115–135CrossRefGoogle Scholar
  2. 2.
    Fuji A (1967) Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Mem Fac Fish Hokkaido Univ 15:83–160Google Scholar
  3. 3.
    Endo H, Nakabayashi N, Agatsuma Y, Taniguchi K (2007) Food of the sea urchins Strongylocentrotus nudus and Hemicentrotus pulcherrimus associated with vertical distributions in fucoid beds and crustose coralline flats in northern Honshu, Japan. MEPS 352:125–135CrossRefGoogle Scholar
  4. 4.
    Agatsuma Y, Yamada H, Taniguchi K (2006) Distribution of the sea urchin Hemicentrotus pulcherrimus along a shallow bathymetric gradient in Onagawa Bay in northern Honshu, Japan. J Shellfish Res 25:1027–1036CrossRefGoogle Scholar
  5. 5.
    Ziegler A, Schroder L, Ogurreck M, Faber C, Stach T (2012) Evolution of a novel muscle design in sea urchins (Echinodermata: Echinoidea). PLoS One 7:e37520CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gorokhova E (2006) Molecular identification of the invasive cladoceran Cercopagis pengoi (Cladocera: Onychopoda) in stomachs of predators. Limnol Oceanogr Methods 4:1–6CrossRefGoogle Scholar
  7. 7.
    Blankenship LE, Yayanos AA (2005) Universal primers and PCR of gut contents to study marine invertebrate diets. Mol Ecol 14:891–899CrossRefPubMedGoogle Scholar
  8. 8.
    Deagle B, Jarman S, Pemberton D, Gales N (2005) Genetic screening for prey in the gut contents from a giant squid (Architeuthis sp.). J Hered 96:417–423CrossRefPubMedGoogle Scholar
  9. 9.
    Steinke D, Hanner R (2011) The FISH-BOL collaborators’ protocol. Mitochondrial DNA 22:10–14CrossRefPubMedGoogle Scholar
  10. 10.
    Hebert PD, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. PNAS 101:14812–14817CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Saunders GW, McDevit DC (2012) Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms. In: Kress WJ, Erickson DL (eds) DNA Barcodes. Springer, New York, pp 207–222CrossRefGoogle Scholar
  13. 13.
    Cho SM, Lee SM, Ko YD, Mattio L, Boo SM (2012) Molecular systematic reassessment of Sargassum (Fucales, Phaeophyceae) in Korea using four gene regions. Bot Mar 55:473–484CrossRefGoogle Scholar
  14. 14.
    Agatsuma Y (2013) Hemicentrotus pulcherrimus, Pseudocentrotus depressus, and Heliocidaris crassispina. In: Lawrence JM (ed) Sea urchins: biology and ecology. Academic Press, United Kingdom, pp 461–473CrossRefGoogle Scholar
  15. 15.
    Ishiwatari N, Fushimi H, Maekawa M, Nanba T (1977) Sudies concerning the fishery biology of the sea urchin, Hemicentrotus pulcherrimus (A. Agassiz) in Kaji. Fukui Prefecture -I. La mer 15:146–150 (in Japanese with English abstract) Google Scholar
  16. 16.
    Taki J, Higashida I (1964) Investigation and problem on introduction of rocks to fishing grounds to enhance the sea urchin Hemicentrotus pulcherrimus in Fukui Prefecture. Aquacult Sci 12:37–47Google Scholar
  17. 17.
    Goff LJ, Moon DA (1993) PCR amplification of nuclear and plastid genes from algal herbarium specimens and algal spores. J Phycol 29:381–384CrossRefGoogle Scholar
  18. 18.
    Hayakawa Y, Ogawa T, Yoshikawa S, Ohki K, Kamiya M (2012) Genetic and ecophysiological diversity of Cladophora (Cladophorales, Ulvophyceae) in various salinity regimes. Phycol Res 60:86–97CrossRefGoogle Scholar
  19. 19.
    Miyagawa T, Tanaka J, Nagumo T (2007) Seaweed and seagrass flora in Wakasa Bay. Bull Nippon Dent Univ Gener Educ 36:43–50 (in Japanese with English abstract) Google Scholar
  20. 20.
    Kajimura M (1979) Note on the marine algal flora in the middle part of the Japan sea coast of Honshu (II): Rhodophyta. Mem Fac Sci Shimane Univ 13:97–120Google Scholar
  21. 21.
    Kajimura M (1978) Note on the marine algal flora in the middle part of the Japan sea coast of Honshu (I): Cyanophyta, Chlorophyta, Phaeophyta. Mem Fac Sci Shimane Univ 12:91–115Google Scholar
  22. 22.
    Yatsuya K, Nishigaki T, Shirafuji N, Takeno K (2008) Monitoring survey of the seaweed community at Muso-Otani, western Wakasa Bay, Sea of Japan. Bull Kyoto Inst Ocean Fish Sci:27–30 (in Japanese with English abstract) Google Scholar
  23. 23.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Asahida T, Yamashita Y, Kobayashi T (1997) Identification of consumed stone flounder, Kareius bicoloratus (Basilewsky), from the stomach contents of sand shrimp, Crangon affinis (De Haan) using mitochondrial DNA analysis. J Exp Mar Biol Ecol 217:153–163CrossRefGoogle Scholar
  25. 25.
    Garbary DJ, Clarke B (2001) Apoptosis in trichoblast development in Polysiphonia harveyi (Rhodophyta). Phycologia 40:324–329CrossRefGoogle Scholar
  26. 26.
    Kakuda N, Terao Y, Nakamura T, Inoue T (1970) Growth and feeding habit of the sea urchin, Hemicentrotus pulcherrimus (A. Agassiz) in the laboratory. Aquacult Sci 17:155–165 (in Japanese) Google Scholar
  27. 27.
    Yatsuya K, Nishigaki T, Itani M, Wada Y (2005) Investigations on drifting seaweed with respect to their mass of occurrence and specific density. Kaiyo monthly 37:516–521 (in Japanese) Google Scholar
  28. 28.
    Hirata T, Tanaka J, Iwami T, Ohmi T, Dazai A, Aoki M, Ueda H, Tsuchiya Y, Sato T, Yokohama Y (2003) Ecological studies on the community of drifting seaweeds in the south-eastern coastal waters of Izu Peninsula, central Japan. II: seasonal changes in plants showing maximum stipe length in drifting seaweed communities. Phycol Res 51:186–191CrossRefGoogle Scholar
  29. 29.
    Hirata T, Tanaka J, Iwami T, Ohmi T, Dazai A, Aoki M, Ueda H, Tsuchiya Y, Sato T, Yokohama Y (2001) Ecological studies on the community of drifting seaweeds in the south-eastern coastal waters of Izu Peninsula, central Japan. I: seasonal changes of plants in species composition, appearance, number of species and size. Phycol Res 49:215–229CrossRefGoogle Scholar
  30. 30.
    Yatsuya K, Nishigaki T, Douke A, Wada Y (2005) Species composition of drifting weaweed collected in western Wakasa Bay, Japan Sea. Bull Kyoto Inst Ocean Fish Sci:13–18 (in Japanese with English abstract)Google Scholar
  31. 31.
    Nakajima N, Sugimoto N, Ohki K, Kamiya M (2016) Diversity of phlorotannin profiles among sargassasacean species affecting variation and abundance of epiphytes. Eur J Phycol 51:307–316CrossRefGoogle Scholar

Copyright information

© Japanese Society of Fisheries Science 2017

Authors and Affiliations

  1. 1.Faculty of Marine BioscienceFukui Prefectural UniversityObamaJapan
  2. 2.Fukui Prefectural Fisheries Experimental StationTsurugaJapan

Personalised recommendations