Fisheries Science

, Volume 83, Issue 3, pp 401–412 | Cite as

Transcriptome analysis of tetrodotoxin sensing and tetrodotoxin action in the central nervous system of tiger puffer Takifugu rubripes juveniles

  • Kogen OkitaEmail author
  • Engkong Tan
  • Hina Satone
  • Shigeharu Kinoshita
  • Shuichi Asakawa
  • Daisuke Ojima
  • Hideki Yamazaki
  • Kazutaka Sakiyama
  • Tomohiro Takatani
  • Osamu Arakawa
  • Atsushi Hagiwara
  • Yoshitaka Sakakura
Original Article Biology


To reveal the sensing of tetrodotoxin (TTX) by tiger puffer Takifugu rubripes juveniles and its action in the central nervous system (CNS), we conducted transcriptome analysis using next-generation sequencing for the olfactory system and brain of non-toxic cultured juveniles administered TTX. Sixty-seven million reads from the nasal region (olfactory epithelium and skin) and the brain of each of three individuals of the control, TTX-sensing and TTX-administered juveniles were assembled into 153,958 contigs. Mapping raw reads from each sample onto the nucleotide sequences of predicted transcripts in the T. rubripes genome (FUGU version 4) and the de novo assembled contigs to investigate their frequency of expression revealed that the expression of 21 and 81 known genes significantly changed in TTX-sensing and TTX-administered juveniles in comparison with control juveniles, respectively. These genes included those related to feeding regulation and a reward system, and indicated that TTX ingestion of T. rubripes juveniles is controlled in the feeding center in the brain, that T. rubripes may sense TTX as a reward, and that accumulated TTX directly acts on the central nervous system to adjust TTX ingestion.


Takifugu rubripes Tetrodotoxin (TTX) Central nervous system RNA sequencing Feeding center Reward system 



This study was financially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) to Y. S. (15K07581, 24380109, 21580227, 19580209), T. T. (26450287), and a Grant-in-Aid for JSPS Research Fellows from JSPS to K. O. (14J00997). This study was partly supported by the Nagasaki University Major Research Project to Y. S., T. T. and O. A.


  1. 1.
    Colquhon D, Henderson R, Ritchie JM (1972) The binding of labelled tetrodotoxin to non-myelinated nerve fibres. J Physiol 227:95–126CrossRefGoogle Scholar
  2. 2.
    Narahashi T (2001) Pharmacology of tetrodotoxin. J Toxicol Toxin Rev 20:67–84CrossRefGoogle Scholar
  3. 3.
    Noguchi T, Arakawa O, Takatani T (2006) TTX accumulation in pufferfish. Comp Biochem Physiol D1:145–152Google Scholar
  4. 4.
    Matsumura K (1998) Production of tetrodotoxin in puffer fish embryos. Environ Toxicol Pharm 6:217–219CrossRefGoogle Scholar
  5. 5.
    Yasumoto T, Yotsu-Yamashita M (1996) Chemical and etiological studies on tetrodotoxin and its analogs. J Toxicol Toxin Rev 15:81–90CrossRefGoogle Scholar
  6. 6.
    Noguchi T, Jeon JK, Arakawa O, Sugita H, Deguchi Y, Shida Y, Hashimoto K (1986) Occurrence of tetrodotoxin in Vibrio sp. isolated from the intestines of a xanthid crab, Atergatis floridus. J Biochem 99:311–314CrossRefPubMedGoogle Scholar
  7. 7.
    Yasumoto T, Yasumura D, Yotsu M, Michishita T, Endo A, Kotaki Y (1986) Bacterial production of tetrodotoxin and anhydrotetrodotoxin. Agric Biol Chem 50:793–795Google Scholar
  8. 8.
    Narita H, Matsubara S, Miwa N, Akahane S, Murakami M, Goto T, Nara M, Noguchi T, Saito T, Shida Y, Hashimoto K (1987) Vibrio alginolyticus, a TTX-producing bacterium isolated from the starfish Astropecten polyacanthus. Nippon Suisan Gakkaishi 47:935–941CrossRefGoogle Scholar
  9. 9.
    Matsui T, Taketsugu S, Sato H, Yamamori K, Kodama K, Ishii A, Hirose H, Shimizu C (1990) Toxification of cultured puffer fish by the administration of tetrodotoxin producing bacteria. Nippon Suisan Gakkaishi 56:705CrossRefGoogle Scholar
  10. 10.
    Saito T, Maruyama J, Kanoh S, Jeon JK, Noguchi T, Harada T, Murata O, Hashimoto K (1984) Toxicity of the cultured pufferfish Fugu rubripes rubripes along with their resistibility against tetrodotoxin. Nippon Suisan Gakkaishi 50:1573–1575 (In Japanese) CrossRefGoogle Scholar
  11. 11.
    Noguchi T, Arakawa O, Takatani T (2006) Toxicity of pufferfish Takifugu rubripes cultured in netcages at the sea or aquaria on land. Comp Biochem Physiol D1:153–157Google Scholar
  12. 12.
    Saito T, Kageyu K, Goto H, Murakami N, Noguchi T (2000) Tetrodotoxin attracts pufferfish (“torafugu” Takifugu rubripes). Bull Inst Ocean Res Dev Tokai Univ 21:93–96Google Scholar
  13. 13.
    Okita K, Yamazaki H, Sakiyama K, Yamane H, Niina S, Takatani T, Arakawa O, Sakakura Y (2013) Puffer smells tetrodotoxin. Ichthyol Res 60:386–389CrossRefGoogle Scholar
  14. 14.
    Matsui T, Hamada S, Konosu S (1981) Difference in accumulation of puffer fish toxin and crystalline tetrodotoxin in the puffer fish, Fugu rubripes rubripes. Nippon Suisan Gakkaishi 47:535–537CrossRefGoogle Scholar
  15. 15.
    Honda S, Arakawa O, Takatani T, Tachibana K, Yagi M, Tanigawa A, Noguchi T (2005) Toxification of cultured puffer fish Takifugu rubripes by feeding on tetrodotoxin-containing diet. Nippon Suisan Gakkaishi 71:815–820 (in Japanese) CrossRefGoogle Scholar
  16. 16.
    Sakakura Y, Takatani T, Nakayasu J, Yamazaki H, Sakiyama K (2016) Administration of tetrodotoxin protects artificially raised juvenile tiger puffer Takifugu rubripes from predators. Fish Sci. doi: 10.1007/s12562-016-1046-0 Google Scholar
  17. 17.
    Yamamori K, Nakamura M, Matsui T, Hara TJ (1988) Gustatory response to tetrodotoxin and saxitoxin in fish: a possible mechanism for avoiding marine toxins. Can J Fish Aquat Sci 45:2182–2186CrossRefGoogle Scholar
  18. 18.
    Itoi S, Yoshikawa S, Asahina K, Suzuki M, Ishizuka K, Takimoto N, Mitsuoka R, Yokoyama N, Detake A, Takayanagi C, Eguchi M, Tatsuno R, Kawane M, Kokubo S, Takanashi S, Miura A, Suitoh K, Takatani T, Arakawa O, Sakakura Y, Sugita H (2014) Larval pufferfish protected by maternal tetrodotoxin. Toxicon 78:35–40CrossRefPubMedGoogle Scholar
  19. 19.
    Saito T, Noguchi T, Harada T, Murata O, Abe T, Hashimoto K (1985) Resistibility of toxic and nontoxic pufferfish against tetrodotoxin. Nippon Suisan Gakkaishi 51:1371CrossRefGoogle Scholar
  20. 20.
    Yotsu-Yamashita M, Nishimori K, Nitanai Y, Isemura M, Sugimoto A, Yasumoto T (2000) Binding properties of 3H-PbTx-3 and 3H-saxitoxin to brain membranes and to skeletal muscle membranes of puffer fish Fugu pardalis and the primary structure of a voltage-gated Na+ channel α-subunit (fMNa1) from skeletal muscle of F. pardalis. Biochem Biophys Res Commun 267:403–412CrossRefPubMedGoogle Scholar
  21. 21.
    Venkatesh B, Lu SQ, Dandona N, See SL, Brenneer S, Soong TW (2005) Genetic basis of tetrodotoxin resistance in pufferfishes. Curr Biol 15:2069–2072CrossRefPubMedGoogle Scholar
  22. 22.
    Maruta S, Yamaoka K, Yotsu-Yamashita M (2008) Two critical residues in p-loop regions of puffer fish Na+ channels on TTX sensitivity. Toxicon 51:381–387CrossRefPubMedGoogle Scholar
  23. 23.
    Yotsu-Yamashita M, Sugimoto A, Terakawa T, Shoji Y, Miyazawa T, Yasumoto T (2001) Purification, characterization, and cDNA cloning of a novel soluble saxitoxin and tetrodotoxin binding protein from plasma of the puffer fish, Fugu pardalis. Eur J Biochem 268:5937–5946CrossRefPubMedGoogle Scholar
  24. 24.
    Yotsu-Yamashita M, Yamaki H, Okoshi N, Araki N (2010) Distribution of homologous proteins to puffer fish saxitoxin and tetrodotoxin binding protein in the plasma of puffer fish and among the tissues of Fugu pardalis examined by western blot analysis. Toxicon 55:1119–1124CrossRefPubMedGoogle Scholar
  25. 25.
    Oba Y, Shimasaki Y, Oshima Y, Satone H, Kitano T, Nakao M, Kawabata S, Honjo T (2007) Purification and characterization of tributyltin-binding protein type 2 from plasma of Japanese flounder, Paralichthys olivaceus. J Biochem 142:229–238CrossRefPubMedGoogle Scholar
  26. 26.
    Noguchi T, Arakawa O (2008) Tetrodotoxin—distriburion and accumulation in aquatic organisms, and cases of human intoxication. Mar Drugs 6:220–242CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Okita K, Takatani T, Nakayasu J, Yamazaki H, Sakiyama K, Ikeda K, Arakawa O, Sakakura Y (2013) Comparison of the localization of tetrodotoxin between wild pufferfish Takifugu rubripes juveniles and hatchery-reared juveniles with tetrodotoxin administration. Toxicon 71:128–133CrossRefPubMedGoogle Scholar
  28. 28.
    Shimizu D, Sakiyama K, Sakakura Y, Takatani T, Takahashi Y (2007) Predation differences between wild and hatchery-reared tiger puffer Takifugu rubripes juveniles in a salt pond mesocosm. Nippon Suisan Gakkaishi 73:461–469 (In Japanese) CrossRefGoogle Scholar
  29. 29.
    Shimizu D, Sakiyama K, Sakakura Y, Takatani T, Takahashi Y (2008) Quantitative evaluation of post-release mortality using salt pond mesocosm: case studies of hatchery and wild juvenile tiger puffer. Rev Fish Sci 16:195–203CrossRefGoogle Scholar
  30. 30.
    Nakajima H, Kai M, Koizumi K, Tanaka T, Machida M (2008) Optimal release locations of juvenile ocellate puffer Takifugu rubripes identified by tag and release experiments. Rev Fish Sci 16:228–234CrossRefGoogle Scholar
  31. 31.
    Sato Y, Hachiya T, Iwasaki W (2012) Next-generation sequencing in aquatic biology: current status and future directions. Fish Genet Breed Sci 41:17–32 (In Japanese) Google Scholar
  32. 32.
    Ikeda K, Murakami Y, Emoto Y, Ngy L, Taniyama S, Yagi M, Takatani T, Arakawa O (2009) Transfer profile of intramuscularly administered tetrodotoxin to non-toxic cultured specimens of the pufferfish Takifugu rubripes. Toxicon 53:99–103CrossRefPubMedGoogle Scholar
  33. 33.
    Nakashima K, Arakawa O, Taniyama S, Nonaka M, Takatani T, Yamamori K, Fuchi Y, Noguchi T (2004) Occurrence of saxitoxins as a major toxin in the ovary of a marine puffer Arothron firmamentum. Toxicon 43:207–212CrossRefPubMedGoogle Scholar
  34. 34.
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotech 29:644–652CrossRefGoogle Scholar
  35. 35.
    Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659CrossRefPubMedGoogle Scholar
  36. 36.
    Sun J, Nishiyama T, Shimizu K, Kadota K (2013) TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinfo 14:219CrossRefGoogle Scholar
  37. 37.
    Tang X, Guilherme A, Chakladar A, Powelka AM, Konda S, Virbasius JV, Nicoloro SM, Straubhaar J, Czech MP (2006) An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARγ, adipogenesis, and insulin-responsive hexose transport. Proc Natl Acad Sci USA 103:2087–2092CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA 100:12027–12032CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Achouri Y, Hegarty BD, Allanic D, Becard D, Hainault I, Ferre P, Foufelle F (2005) Long chain fatty acyl-CoA synthetase 5 expression is induced by insulin and glucose: involvement of sterol regulatory element-binding protein-1c. Biochimie 87:1149–1155CrossRefPubMedGoogle Scholar
  40. 40.
    Gonzalez R, Unniappan S (2010) Molecular characterization, appetite regulatory effects and feeding related changes of peptide YY in goldfish. Gen Comp Endocrinol 166:273–279CrossRefPubMedGoogle Scholar
  41. 41.
    Chen Y, Shen Y, Pandit NP, Fu J, Li D, Li J (2013) Molecular cloning, expression analysis, and potential food intake attenuation effect of peptide YY in grass carp (Ctenopharyngodon idellus). Gen Comp Endocrinol 187:66–73CrossRefPubMedGoogle Scholar
  42. 42.
    Chen Y, Pandit NP, Fu J, Li D, Li J (2014) Identification, characterization and feeding response of peptide YYb (PYYb) gene in grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 40:45–55CrossRefPubMedGoogle Scholar
  43. 43.
    Peyon P, Saied H, Lin X, Peter RE (2000) Preprotachykinin gene expression in goldfish brain: sexual, seasonal, and postprandial variations. Peptides 21:225–231CrossRefPubMedGoogle Scholar
  44. 44.
    Matsuda K, Maruyama K (2007) Regulation of feeding behavior by pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) in vertebrates. Peptides 28:1761–1766CrossRefPubMedGoogle Scholar
  45. 45.
    Glowinski J, Kemel ML, Desban M, Gauchy C, Lavielle S, Chassaing G, Beaujouan JC, Tremblay L (1993) Distinct presynaptic control of dopamine release in striosomal- and matrix-enriched areas of the rat striatum by selective agonists of NK1, NK2 and NK3 tachykinin receptors. Regul Pept 46:124–128CrossRefPubMedGoogle Scholar
  46. 46.
    Marco N, Thirion A, Mons G, Bougault I, Le Fur G, Soubrie P, Steinberg R (1998) Activation of dopaminergic and cholinergic neurotransmission by tachykinin NK3 receptor stimulation: an in vivo microdialysis approach in guinea pig. Neuropeptides 32:481–488CrossRefPubMedGoogle Scholar
  47. 47.
    Conner JR, Wang XS, Neely EB, Ponnuru P, Morita H, Beard J (2008) Comparative study of the influence of Thy1 deficiency and dietary iron deficiency on dopaminergic profiles in the mouse striatum. J Neurosci Res 86:3194–3202CrossRefGoogle Scholar
  48. 48.
    De Pedro N, Delgado MJ, Pinillos ML, Alonso-Bedate M (1998) Alpha1-adrenergic and dopaminergic receptors are involved in the anorectic effect of corticotropin-releasing factor in goldfish. Life Sci 62:1801–1808CrossRefPubMedGoogle Scholar
  49. 49.
    Siddhuraju P, Becker K (2002) Effect of phenolic nonprotein amino acid l-dopa (l-3,4-dihydroxyphenylalanine) on growth performance, metabolic rates and feed nutrient utilization of common carp (Cyprinus carpio L.). Aquacult Nutr 6:69–77CrossRefGoogle Scholar
  50. 50.
    Johansson V, Winberg S, Björnsson BT (2005) Growth hormone-induced stimulation of swimming and feeding behaviour of rainbow trout is abolished by the D1 dopamine antagonist SCH23390. Gen Comp Endocrinol 141:58–65CrossRefPubMedGoogle Scholar
  51. 51.
    Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119:679–691CrossRefPubMedGoogle Scholar
  52. 52.
    Behrens M, Bartelt J, Reichling C, Winnig M, Kuhn C, Meyerhof W (2006) Members of RTP and REEP gene families influence functional bitter taste receptor expression. J Biol Chem 281:20650–20659CrossRefPubMedGoogle Scholar
  53. 53.
    Vitureira N, Andres R, Perez-Martinez E, Martinez A, Bribian A, Blasi J, Chelliah S, Lopez-Domenech G, De Castro F, Burgaya F, McNagny K, Soriano E (2010) Podocalyxin is a novel polysialylated neural adhesion protein with multiple roles in neural development and synapse formation. PLoS One 5:e12003CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Watabe-Rudolph M, Begus-Nahrmann Y, Lechel A, Rolyan H, Scheithauer M, Rettinger G, Thal DR, Rudolph KL (2011) Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions. PLoS One 6:e27801CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ray A, Treloar HB (2012) IgSF8: a developmentally and functionally regulated cell adhesion molecule in olfactory sensory neuron axons and synapses. Mol Cell Neurosci 50:238–249CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zupanc GKH (2008) Adult neurogenesis and neuronal regeneration in the brain of teleost fish. J Physiol Paris 102:357–373CrossRefPubMedGoogle Scholar
  57. 57.
    Okamura H, Doi M, Fustin JM, Yamaguchi Y, Matsuo M (2010) Mammalian circadian clock system: molecular mechanisms for pharmaceutical and medical sciences. Adv Drug Deliv Rev 62:876–884Google Scholar
  58. 58.
    Malin SA, Nerbonne J (2002) Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci 22:10094–10105PubMedGoogle Scholar
  59. 59.
    Johnston J, Griffin SJ, Baker C, Skrzypiec A, Chernova T, Forsythe ID (2008) Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons. J Physiol 586:3493–3509CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Granseth B, Odermatt B, Royle S, Lagnado L (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51:773–786CrossRefPubMedGoogle Scholar
  61. 61.
    Ito H, Atsuzawa K, Sudo K, Di Stefano P, Iwamoto I, Morishita R, Takei S, Semba R, Defilippi P, Asano T, Usuda N, Nagata K (2008) Characterization of a multidomain adaptor protein, p140Cap, as part of a pre-synaptic complex. J Neurochem 107:61–72CrossRefPubMedGoogle Scholar
  62. 62.
    Sugita S, Han W, Butz S, Liu X, Fernandez-Chacon R, Lao Y, Südhof TC (2001) Synaptotagmin VII as a plasma membrane Ca2+ sensor in exocytosis. Neuron 30:459–473CrossRefPubMedGoogle Scholar
  63. 63.
    Klumpp S, Selke D, Ahlemeyer B, Schaper C, Krieglstein J (2002) Relationship between protein phosphatase type-2C activity and induction of apoptosis in cultured neuronal cells. Neurochem Int 41:251–259CrossRefPubMedGoogle Scholar
  64. 64.
    Zupanc GKH, Lamprecht J (2000) Towards a cellular understanding of motivation: structural reorganization and biochemical switching as key mechanisms of behavioral plasticity. Ethology 106:467–477CrossRefGoogle Scholar
  65. 65.
    Oliveira RF (2009) Social behavior in context: hormonal modulation of behavioral plasticity and social competence. Integr Comp Biol 49:423–440CrossRefPubMedGoogle Scholar
  66. 66.
    Gonda A, Herczeg G, Merilä J (2011) Population variation in brain size of nine-spined sticklebacks (Pungitius pungitius)—local adaptation or environmentally induced variation? BMC Evol Biol 11:75CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tatsuno R, Yamaguchi K, Takatani T, Arakawa O (2013) RT-PCR- and MALDI-TOF mass spectrometry-based identification and discrimination of isoforms homologous to pufferfish saxitoxin- and tetrodotoxin-binding protein in the plasma of non-toxic cultured pufferfish (Takifugu rubripes). Biosci Biotechnol Biochem 77:208–212CrossRefPubMedGoogle Scholar
  68. 68.
    Hashiguchi Y, Lee JM, Shiraishi M, Komatsu S, Miki S, Shimasaki Y, Mochioka N, Kusakabe T, Oshima Y (2015) Characterization and evolutionary analysis of tributyltin-binding protein and pufferfish saxitoxin and tetrodotoxin-binding protein genes in toxic and nontoxic pufferfishes. J Evol Biol 28:1103–1118CrossRefPubMedGoogle Scholar
  69. 69.
    Taniyama S, Mahmud Y, Tanu MB, Takatani T, Arakawa O, Noguchi T (2001) Delayed haemolytic activity by the freshwater puffer Tetraodon sp. toxin. Toxicon 39:725–727CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Fisheries Science 2017

Authors and Affiliations

  • Kogen Okita
    • 1
    • 5
    Email author
  • Engkong Tan
    • 2
  • Hina Satone
    • 2
  • Shigeharu Kinoshita
    • 2
  • Shuichi Asakawa
    • 2
  • Daisuke Ojima
    • 3
  • Hideki Yamazaki
    • 3
  • Kazutaka Sakiyama
    • 4
  • Tomohiro Takatani
    • 1
  • Osamu Arakawa
    • 1
  • Atsushi Hagiwara
    • 1
  • Yoshitaka Sakakura
    • 1
  1. 1.Graduate School of Fisheries and Environmental SciencesNagasaki UniversityBunkyo 1-14Japan
  2. 2.Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyoJapan
  3. 3.Research Center for Marine Invertebrates, National Research Institute of Fisheries and Environment of Inland SeaJapan Fisheries Research and Education AgencyMomoshimaJapan
  4. 4.Japan Sea National Research Institute of FisheriesJapan Fisheries Research and Education AgencyMiyazuJapan
  5. 5.National Research Institute of Fisheries and Environment of Inland SeaJapan Fisheries Research and Education AgencyHatsukaichiJapan

Personalised recommendations