Fisheries Science

, Volume 83, Issue 3, pp 367–372 | Cite as

Single spaghetti tagging as a high-retention marking method for Japanese common sea cucumber Apostichopus japonicus

  • Takumi Fujino
  • Hideki Sawada
  • Hiromichi Mitamura
  • Reiji Masuda
  • Nobuaki Arai
  • Yoh Yamashita
Original Article Biology


Populations of sea cucumbers, including the Japanese common sea cucumber Apostichopus japonicus, have been seriously depleted worldwide due to overfishing. Mark–recapture study is an efficient means of collecting ecological data. However, the use of such a method in sea cucumbers is difficult because they lack hard tissues in the body wall. Here we tested the viability of various tagging methods on A. japonicus. First, we applied conventional tags using four different methods [single spaghetti (T-bar) tagging, double spaghetti tagging, ribbon tagging, and Atkins tagging] to ten individuals per method in aquaria for 14 days. Of the methods used, single spaghetti tagging had the highest retention rate. Then we examined the retention rate of single spaghetti tags on ten individual sea cucumbers for up to approximately 6 months in rearing conditions. The single spaghetti tagging method showed a retention rate of 100% over at least 7 days, and 50% of the tags remained embedded after 56 days. The longest duration of tag retention was 174 days, at which time the experiment was terminated. These results indicate that single spaghetti tagging is reliable for both short- and longer-term studies, making it a useful tool for ecological and conservation studies in sea cucumbers.


Retention rate Tag shedding Survival rate Conventional tag Holothurians 



We offer our sincere thanks to K. Takahashi and all those who supported the work and analyses in this study. This study was partly supported by a Grant-in-Aid for Young Scientists (A) (25712022) to H. M., and the Coastal Ecosystem Complex Project of the Ocean Resource Use Promotion Technology Development Program, MEXT of Japan.


  1. 1.
    Hamel JF, Mercier A (1999) To serve or to save? Sea cucumbers. Ocean Realm (Summer) 33–39Google Scholar
  2. 2.
    Akamine J (2015) Apostichopus japonicus fisheries, trade, and foodways in Japan. In: Yang H, Hamel J, Merciel A (eds) The sea cucumber Apostichopus japonicus, vol 39. Elsevier, Amsterdam, pp 399–421Google Scholar
  3. 3.
    Purcell SW, Mercier A, Conand C, Hamel JF, Toral-Granda MV, Lovatelli A, Uthicke S (2013) Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing. Fish Fish 14:34–59CrossRefGoogle Scholar
  4. 4.
    Uthicke S, Purcell S (2004) Preservation of genetic diversity in restocking of the sea cucumber Holothuria scabra planned through allozyme electrophoresis. Can J Fish Aquat Sci 61:519–528CrossRefGoogle Scholar
  5. 5.
    Purcell SW, Hair CA, Mills DJ (2012) Sea cucumber culture, farming and sea ranching in the tropics: progress, problems and opportunities. Aquaculture 368–369:68–81CrossRefGoogle Scholar
  6. 6.
    Shirakihara K, Kitada S (2004) Estimating migration rates from two tag-release/one recovery experiments. ICES J Mar Sci 61:821–828CrossRefGoogle Scholar
  7. 7.
    Gianasi BL, Verkaik K, Hamel JF, Mercier A (2015) Novel use of PIT tags in sea cucumbers: promising results with the commercial species Cucumaria frondosa. PLoS One 10(5):e0127884. doi: 10.1371/journal.pone.0127884 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kirshenbaum S, Feindel S, Chen Y (2006) A study of tagging methods for the sea cucumber Cucumaria frondosa in the waters off Maine. Fish Bull 104:299–302Google Scholar
  9. 9.
    Cieciel K, Pyper BJ, Eckert GL (2009) Tag retention and effects of tagging on movement of the giant red sea cucumber Parastichopus californicus. N Am J Fish Manage 29:288–294CrossRefGoogle Scholar
  10. 10.
    Conand C (1991) Long-term movements and mortality of some tropical sea-cucumbers monitored by tagging and recapture. In: Yanagisawa T, Yasumasu I, Ogurao C, Suzuki N, Motokawa T (eds) Biology of echinodermata. Balkema, Totterdam, pp 169–175Google Scholar
  11. 11.
    Conand C (2008) Population status, fisheries and trade of sea cucumbers in Africa and the Indian Ocean. FAO Fisheries and Aquaculture technical paper. V. Toral-Granda, vol 516. FAO, Rome, pp 143–193Google Scholar
  12. 12.
    Yamana Y, Hamano T, Goshima S (2008) Individual tracking to specify the aestivation site of adult sea cucumber Apostichopus japonicus on a jetty in Yoshimi Bay, western Yamaguchi Prefecture, Japan. Plank Benth Res 3:235–239CrossRefGoogle Scholar
  13. 13.
    Ji T, Dong Y, Dong S (2008) Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka: aestivation and temperature. Aquaculture 283:180–187CrossRefGoogle Scholar
  14. 14.
    Yu Z, Zhou Y, Yang H, Hu C (2014) Bottom culture of the sea cucumber Apostichopus japonicus Selenka (Echinodermata: Holothuroidea) in a fish farm, southern China. Aquacult Res 45:1434–1441CrossRefGoogle Scholar
  15. 15.
    Yamana Y, Hamano T, Goshima S (2010) Natural growth of juveniles of the sea cucumber Apostichopus japonicus: studying juveniles in the intertidal habitat in Hirao Bay, eastern Yamaguchi Prefecture, Japan. Fish Sci 76:585–593CrossRefGoogle Scholar
  16. 16.
    Yamana Y, Hamano T, Goshima S (2009) Seasonal distribution pattern of adult sea cucumber Apostichopus japonicus (Stichopodidae) in Yoshimi Bay, western Yamaguchi Prefecture, Japan. Fish Sci 75:585–591CrossRefGoogle Scholar
  17. 17.
    Yamana Y, Hamano T, Goshima S (2009) Laboratory observations of habitat selection in aestivating and active adult sea cucumber Apostichopus japonicus. Fish Sci 75:1097–1102CrossRefGoogle Scholar
  18. 18.
    Masaki K, Yamaura K, Aoto I, Okuma H, Kanamaru H, Ito Y (2007) Movement, dispersal and growth of farm-raised Apostichopus japonicus juveniles after release into artificial reef. Aquac Sci 55:355–366Google Scholar
  19. 19.
    Masaki K, Yamaura K, Aoto I, Okuma H (2007) Factors decreasing the discovery rates of farm-raised juveniles of sea cucumber Apostichopus japonicus after release into artificial reef. Aquac Sci 55:347–354Google Scholar
  20. 20.
    Hamano T, Kondo M, Ohhashi Y, Tateishi T, Fujimura H, Sueyoshi T (1996) The whereabouts of edible sea cucumber Stichopus japonicus juveniles released in the wild (in Japanese, with English abstract). Aquac Sci 44:249–254Google Scholar
  21. 21.
    McFarlane GA, Wydoski RS, Prince ED (1990) Historical review of the development of external tags and marks. Am Fish Soc Symp 7:9–29Google Scholar
  22. 22.
    Yamana Y, Goshima S, Hamano T, Yusa T, Furukawa Y, Yoshida N (2011) Formulae to estimate standard body length for regional forms of the sea cucumber Apostichopus japonicus in Japan. Nippon Suisan Gakkaishi 77:989–998CrossRefGoogle Scholar
  23. 23.
    R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed 9 September 2016
  24. 24.
    Purcell SW, Blockmans BF, Nash WJ (2006) Efficacy of chemical markers and physical tags for large-scale release of an exploited holothurian. J Exp Mar Biol Ecol 334:283–293CrossRefGoogle Scholar
  25. 25.
    Yang H, Yuan X, Zhou Y, Mao Y, Zhang T, Liu Y (2005) Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquac Res 36:1085–1092CrossRefGoogle Scholar
  26. 26.
    Yasuda T, Nagano N, Kitano H, Ohga H, Sakai T, Ohshimo S, Matsuyama M (2015) Tag attachment success can be temperature dependent: a case study of the chub mackerel Scomber japonicus. Anim Biotelem 3:48. doi: 10.1186/s40317-015-0090-3 CrossRefGoogle Scholar
  27. 27.
    Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19:334–343CrossRefPubMedGoogle Scholar
  28. 28.
    Roy R, Beguin J, Tissot L, Argillier C, Smith F, Smedbol S, De Oliveira E (2014) Testing the VEMCO positioning system: spatial distribution of the probability of detection and the positioning error in a reservoir. Anim Biotelem 2:1. doi: 10.1186/2050-3385-2-1 CrossRefGoogle Scholar

Copyright information

© Japanese Society of Fisheries Science 2017

Authors and Affiliations

  • Takumi Fujino
    • 1
  • Hideki Sawada
    • 2
  • Hiromichi Mitamura
    • 1
  • Reiji Masuda
    • 2
  • Nobuaki Arai
    • 3
  • Yoh Yamashita
    • 3
  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan
  2. 2.Maizuru Fisheries Research Station, Field Science Education and Research CenterKyoto UniversityMaizuruJapan
  3. 3.Field Science Education and Research CenterKyoto UniversitySakyoJapan

Personalised recommendations