Molecular cloning and expression of the heat shock protein 70 gene in the Kumamoto oyster Crassostrea sikamea

Abstract

Episodes of summer mortality of the Kumamoto oyster Crassostrea sikamea are a major problem for its cultivation. Expression of the heat shock protein 70 (HSP70) is induced by various environmental stresses, including heat. We cloned and sequenced hsp70 complementary DNA from C. sikamea to investigate the relationship between hsp70 expression and heat tolerance in this oyster. Quantitative real-time polymerase chain reaction was performed using gill tissue dissected from oysters before and after heat shock for 1 h. The results showed hsp70 expression was faster and greater in oysters cultured at 20–22 °C than at 10–12 °C, and survival was lower among oysters cultured at 20–22 °C than at 10–12 °C. Moreover, heat tolerance was investigated by a 1-h pre-heat treatment, followed by exposure to heat shock conditions 5 days later. Survival was higher and hsp70 expression was notably lower in oysters that received the pre-heat treatment compared with those that did not. We conclude that a pre-heat treatment of only 1 h may be useful for inducing heat tolerance in C. sikamea, and that a low level of hsp70 expression after heat shock is an important index in selecting for high heat tolerance in these oysters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Feder ME, Hofman GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Piano A, Asirelli C, Caselli F, Fabbri E (2002) Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. Cell Stress Chap 7:250–257

    CAS  Article  Google Scholar 

  5. 5.

    Lindquest SL (1986) The heat-shock responses. Annu Rev Biochem 55:1151–1191

    Article  Google Scholar 

  6. 6.

    Sorensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  7. 7.

    Fabbri E, Valbonesi P, Franzellitti S (2008) HSP expression in bivalves. ISJ 5:135–161

    Google Scholar 

  8. 8.

    Boutet I, Tanguy A, Rousseau S, Auffert M, Moraga M (2003) Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein (hsp70) genes in the Pacific oyster Crassotrea gigas. Cell Stress Chap 8:76–85

    CAS  Article  Google Scholar 

  9. 9.

    Boutet I, Tanguy A, Moraga D (2003) Organization and nucleotide sequence of the European flat oyster Ostrea edulis heat shock cognate 70 (hsc70) and heat shock protein (hsp70) genes. Aquat Toxicol 65:221–225

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Clegg JS, Uhlingher KR, Jackson SA, Cherr GN, Rifkin E, Friedman CS (1998) Induced thermotolerance and heat shock protein-70 family in Pacific oyster Crassostrea gigas. Mol Mar Biol Biotechnol 7:21–30

    CAS  Google Scholar 

  11. 11.

    Piano A, Franzellitti S, Tinti F, Fabbri E (2005) Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Gene 361:119–126

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Patterson HK, Boettcher A, Carmichael RH (2014) Biomarkers of dissolved oxygen stress in oysters: a tool for restoration and management efforts. PLOS One 9:e104440

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Shamseldin A, Clegg J, Friedman C, Cherr N, Pillai C (1997) Induced thermotolerance in the pacific oyster, Crassostrea gigas. J Shellfish Res 16:487–491

    Google Scholar 

  14. 14.

    Hamdoun AM, Cheney DP, Cherr GN (2003) Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance. Biol Bull 205:160–169

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Jackson SA, Uhlinger KR, Clegg JS (2011) Duration of induced thermal tolerance and tissue-specific expression of hsp/hsc70 in the eastern oyster, Crassostrea virginica and the Pacific oyster, Crassostrea gigas. Aquaculture 317:168–174

  16. 16.

    Encomio VG, Chu FLE (2007) Heat shock protein (hsp70) expression and thermal tolerance in sublethally heat-shocked eastern oysters Crassostrea virginica infected with the parasite Perkinsus marinus. Dis Aquat Org 76:251–260

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Usuki H (2002) Evaluation of characteristics and preservation of Pacific oyster, Crassostrea gigas, in view of the genetic resources. Bull Fish Res Agency 4:40–104

    Google Scholar 

  18. 18.

    Imai T, Sakai S (1961) Study if breeding the Japanese oyster, Crassotrea gigas. Tohoku J Agric Res 12:125–171

    Google Scholar 

  19. 19.

    Numachi K (1971) Biological research on the oyster. In: Imai T (ed) Aquaculture in shallow seas: progress in shallow sea culture. Koseisha Koseikaku, Tokyo, pp 82–105

    Google Scholar 

  20. 20.

    Banks MA (1993) Discrimination between closely related Pacific oyster species (Crassostrea) via mitochondrial DNA sequences coding for large subunit rRNA. Mol Mar Bio Biotech 2:129–136

    CAS  Google Scholar 

  21. 21.

    Beattie JH, Kenneth K, Chew K, William K, Harshberger K (1980) Differential survival of selected strains of Pacific oysters (Crassotrea gigas) during summer mortality. Proc Natl Shellfish Assoc 70:184–189

    Google Scholar 

  22. 22.

    Degremont L, Bedier E, Soletchnik P, Ropert M, Huvet A, Moal J, Samin JF, Boudry P (2005) Relative importance of family, site, and field placement timing on survival, growth, and yield of hatchery-produced Pacific oyster spat (Crassostrea gigas). Aquaculture 249:213–229

    Article  Google Scholar 

  23. 23.

    Degremont L, Bedier E, Boudry P (2010) Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). II. Response to selection for survival and its influence on growth and yield. Aquaculture 299:21–29

    Article  Google Scholar 

  24. 24.

    Martinetz J, Vasquez R, Renteria Y (2012) Early gametogenesis of Kumamoto oyster (Crassostrea sikamea). Hidrobiologica 2:181–184

    Google Scholar 

  25. 25.

    Farcy E, Voiseux C, Lebel JM, Fiévet B (2009) Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress. Cell Stress Chap 14:371–380

    CAS  Article  Google Scholar 

  26. 26.

    Zhang Z, Zhang Q (2012) Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassotrea hongkongensis responding to thermal stress and exposure of Cu2+ and malachite green. Gene 497:172–180

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    De Decker S, Saulnier D (2011) Vibriosis induced by experimental cohabitation in Crassostrea gigas: evidence of early infection and down-expression of immune-related genes. Fish Shellfish Immunol 34:939–945

    Google Scholar 

  28. 28.

    Gupta RS, Singh B (1994) Phylogenetic analysis of 70kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol 4:1104–1114

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Laursen JR, Liu H, Wu XJ, Yoshino TP (1997) Heat-shock response in a molluscan cell line: characterization of the response and cloning of an inducible HSP70 cDNA. J Invertebr Pathol 70:226–233

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Samain JF, Degremont L, Soletchinik P, Haure J, Bedier E, Ropert M, Moal J, Huvet A, Bacca H, Wormhoudt V, Delaporte M, Costil K, Pouvreau S, Lambert C, Soudant P, Nicolas JL, Roux FL, Renault T, Gagnaire B, Geret F, Boutet I, Burgeot T, Bourdry P (2007) Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes. Aquaculture 268:227–243

    Article  Google Scholar 

  31. 31.

    Song HM, Mu XD, Gu DE, Luo D, Yang YX, Xu M, Luo JR, Zhang JE, Hu YC (2014) Molecular characteristics of the HSP70 gene and its differential expression in female and male golden apple snails (Pomacea canaliculata) under temperature stimulation. Cell Stress Chap 19:579–589

    CAS  Article  Google Scholar 

  32. 32.

    De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Kumamoto Prefectural Fisheries Research Center for the rearing of C. sikamea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kitano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagata, T., Sameshima, M., Uchikawa, T. et al. Molecular cloning and expression of the heat shock protein 70 gene in the Kumamoto oyster Crassostrea sikamea . Fish Sci 83, 273–281 (2017). https://doi.org/10.1007/s12562-017-1064-6

Download citation

Keywords

  • Stress response
  • Quantitative real-time polymerase chain reaction
  • Heat tolerance
  • Pre-heat treatment
  • Molecular chaperone