Fisheries Science

, Volume 82, Issue 6, pp 923–930 | Cite as

Incidental consumption of ephyrae of moon jellyfish Aurelia aurita s.l. by three filter-feeding sessile organisms: laboratory experiments

  • Kentaro S. SuzukiEmail author
  • Emi Kumakura
  • Yasuyuki Nogata
Original Article Biology


Moon jellyfish Aurelia aurita s.l. has been suggested to have high mortality during the ephyra stage, which potentially affects the population size of the later medusa stage. However, the mechanism behind the high mortality rate has still not been clarified. Ephyrae of A. aurita are liberated from the sessile strobila, which are usually surrounded by filter-feeding sessile organisms. In the present study, we carried out a series of feeding trials at 10 °C, offering A. aurita ephyrae to three potential predatory filter-feeding sessile organisms: the mussel Mytilus galloprovincialis, the ascidian Styela plicata, and the barnacle Amphibalanus eburneus. From the experiments, the mussel was estimated to have the highest ability to consume ephyrae among the sessile organisms. Size-selective filtration experiments showed that the mussel consumed newly liberated ephyrae [3 mm total body diameter (TBD)] at a significantly higher efficiency than larger (5 and 7 mm TBD) ephyrae. Our results demonstrate that filter-feeding sessile organisms, especially the mussel, are potential consumers of the early ephyra stage.


Filtration Sessile organisms Gelatinous zooplankton Planktonic larva 



We especially thank Ms. E. Yoshimura, Ms. K. Sato, Dr. T. Yoshimura and Dr. Y. Nakane for their cooperation with the laboratory experiments, Dr. M. Tomita for helpful advice on the statistical analysis, Mr. T. Yamashita, Mr. A. Yasuda, Mr. Y. Murata, and Mr. Y. Takami for helping with the sample collection and field observations, and Dr. M. L. Walsh for editing the English. We are also grateful to two anonymous reviewers for helpful comments that improved the manuscript.


  1. 1.
    Huntley ME, Hobson LA (1978) Medusa predation and plankton dynamics in a temperate fjord, British Columbia. J Fish Res Board Can 35:257–261CrossRefGoogle Scholar
  2. 2.
    Möller H (1984) Reduction of a larval herring population by jellyfish predator. Science 224:621–622CrossRefPubMedGoogle Scholar
  3. 3.
    Condon RH, Steinberg DK, del Giorgio PA et al (2011) Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Natl Acad Sci USA 108:10225–10230CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lebrato M, Pitt KA, Sweetman AK et al (2012) Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiologia 690:227–245CrossRefGoogle Scholar
  5. 5.
    Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Ann Rev Mar Sci 4:209–235CrossRefPubMedGoogle Scholar
  6. 6.
    Condon RH, Duarte CM, Pitt KA et al (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proc Natl Acad Sci USA 110:1000–1005CrossRefPubMedGoogle Scholar
  7. 7.
    Purcell JE, Uye S, Lo W-T (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174CrossRefGoogle Scholar
  8. 8.
    Gibbons MJ, Richardson AJ (2013) Beyond the jellyfish joyride and global oscillations: advancing jellyfish research. J Plankton Res 35:929–938CrossRefGoogle Scholar
  9. 9.
    Dawson MN, Martin LE (2001) Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451:259–273CrossRefGoogle Scholar
  10. 10.
    Uye S, Fujii N, Takeoka H (2003) Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku, Japan. Plankton Biol Ecol 50:17–21Google Scholar
  11. 11.
    Pagès F (2001) Past and present anthropogenic factors promoting the invasion, colonization and dominance by jellyfish of a Spanish coastal lagoon. In: Briand F (ed) Gelatinous zooplankton outbreaks: theory and practice. CIESM Workshop series 14. CIESM, Monaco, pp 59–71Google Scholar
  12. 12.
    Zaitsev Y, Mamaev V (1997) Biological diversity in the Black Sea: a study of change and decline. United Nations, New YorkGoogle Scholar
  13. 13.
    Kogovšek T, Bogunović B, Malej A (2010) Recurrence of bloom-forming scyphomedusae: wavelet analysis of a 200-year time series. Hydrobiologia 645:81–96CrossRefGoogle Scholar
  14. 14.
    Uye S (2011) Human forcing of the copepod–fish–jellyfish triangular trophic relationship. Hydrobiologia 666:71–83CrossRefGoogle Scholar
  15. 15.
    Dong Z, Liu D, Keesing JK (2010) Jellyfish blooms in China: dominant species, causes and consequences. Mar Pollut Bull 60:954–963CrossRefPubMedGoogle Scholar
  16. 16.
    Liu W-C, Lo W-T, Purcell JE, Chang H-H (2009) Effects of temperature and light intensity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan. Hydrobiologia 616:247–258CrossRefGoogle Scholar
  17. 17.
    Han C-H, Uye S (2010) Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton Benthos Res 5:98–105CrossRefGoogle Scholar
  18. 18.
    Willcox S, Moltschaniwskyj NA, Crawford CM (2008) Population dynamics of natural colonies of Aurelia sp. scyphistomae in Tasmania, Australia. Mar Biol 154:661–670CrossRefGoogle Scholar
  19. 19.
    Thein H, Ikeda H, Uye S (2012) The potential role of podocysts in perpetuation of the common jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa) in anthropogenically perturbed coastal waters. Hydrobiologia 690:157–167CrossRefGoogle Scholar
  20. 20.
    Kakinuma Y (1975) An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. Bull Mar Biol Stn Asamushi 15:101–112Google Scholar
  21. 21.
    Custance DRN (1964) Light as an inhibitor of strobilation in Aurelia aurita. Nature 204:1219–1220CrossRefGoogle Scholar
  22. 22.
    Fu Z, Shibata M, Makabe R et al (2014) Body size reduction under starvation, and the point of no return, in ephyrae of the moon jellyfish Aurelia aurita. Mar Ecol Prog Ser 510:255–263CrossRefGoogle Scholar
  23. 23.
    Ishii H, Kojima S, Tanaka Y (2004) Survivorship and production of Aurelia aurita ephyrae in the innermost part of Tokyo Bay, Japan. Plankton Biol Ecol 51:26–35Google Scholar
  24. 24.
    Fuiman LA, Werner RG (2002) Fishery science: the unique contribution of early life stages. Blackwell Science, OxfordGoogle Scholar
  25. 25.
    Paschke KA, Gebauer P, Buchholz F, Anger K (2004) Seasonal variation in starvation resistance of early larval North Sea shrimp Crangon crangon (Decapoda: Crangonidae). Mar Ecol Prog Ser 279:183–191CrossRefGoogle Scholar
  26. 26.
    Cargo DG, Schultz LP (1967) Further observations on the biology of the sea nettle and jellyfishes in Chesapeake Bay. Chesapeake Sci 8:209–220CrossRefGoogle Scholar
  27. 27.
    Makabe R, Furukawa R (2014) Marine artificial structures as amplifiers of Aurelia aurita s.l. blooms: a case study of a newly installed floating pier. J Oceanogr 70:447–455CrossRefGoogle Scholar
  28. 28.
    Miyake H, Terazaki M, Kakinuma Y (2002) On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. J Oceanogr 58:451–459CrossRefGoogle Scholar
  29. 29.
    Straehler-Pohl I, Jarms G (2010) Identification key for young ephyrae: a first step for early detection of jellyfish blooms. Hydrobiologia 645:3–21CrossRefGoogle Scholar
  30. 30.
    Fujiwara S, Akima C, Nogata Y et al (2013) Bio-organic and anti-barnacle studies of fluorescence-labeled probe compounds against cyprids of barnacles. J Exp Mar Biol Ecol 445:88–92CrossRefGoogle Scholar
  31. 31.
    Toyokawa M, Aoki K, Yamada S et al (2011) Distribution of ephyrae and polyps of jellyfish Aurelia aurita (Linnaeus 1758) sensu lato in Mikawa Bay, Japan. J Oceanogr 67:209–218CrossRefGoogle Scholar
  32. 32.
    Harrison PJ, Conway HL, Holmes RW, Davis CO (1977) Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida. Mar Biol 43:19–31CrossRefGoogle Scholar
  33. 33.
    Uye S, Kayano Y (1994) Predatory feeding behavior of Tortanus forcipatus on three different prey. Bull Plankton Soc Japan 40:173–176Google Scholar
  34. 34.
    Coughlan J (1969) The estimation of filtering rate from the clearance of suspensions. Mar Biol 2:356–358CrossRefGoogle Scholar
  35. 35.
    Sokal RR, James FR (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New YorkGoogle Scholar
  36. 36.
    Bailey KM, Houde ED (1989) Predation on eggs and larvae of marine fishes and the recruitment problem. Adv Mar Biol 25:1–83CrossRefGoogle Scholar
  37. 37.
    Rumrill SS (1990) Natural mortality of marine invertibrate larvae. Ophelia 32:163–198CrossRefGoogle Scholar
  38. 38.
    Fuiman LA, Cowan JHJ, Smith ME, O’Neal JP (2005) Behavior and recruitment success in fish larvae: variation with growth rate and the batch effect. Can J Fish Aquat Sci 62:1337–1349CrossRefGoogle Scholar
  39. 39.
    Fuiman LA, Cowan JHJ (2003) Behavior and recruitment success in fish larvae: repeatability and covariation of survival skills. Ecology 84:53–67CrossRefGoogle Scholar
  40. 40.
    Kim YS, Moon TS (1998) Filtering rate with effect of water temperature and size of two farming ascidians Styela clava and S. plicata, and a farming mussel Mytilus edulis. J Korean Fish Soc 31:272–277 (in Korean with English abstract) Google Scholar
  41. 41.
    van Erkom Schurink C, Griffiths CL (1992) Physiological energetics of four South African mussel species in relation to body size, ration and temperature. Comp Biochem Physiol 101A:779–789Google Scholar
  42. 42.
    Fiala-Médioni A (1978) Filter-feeding ethology of benthic invertebrates (ascidians). III. Recording of water current in situ—rate and rhythm of pumping. Mar Biol 45:185–190CrossRefGoogle Scholar
  43. 43.
    Ren JS, Ross AH, Schiel DR (2000) Functional descriptions of feeding and energetics of the Pacific oyster Crassostrea gigas in New Zealand. Mar Ecol Prog Ser 208:119–130CrossRefGoogle Scholar
  44. 44.
    Bougrier S, Geairon P, Jonquikres G, Bather C (1995) Allometric relationships and effects of temperature on clearance and oxygen consumption rates of Crassostrea gigas (Thunberg). Aquaculture 134:143–154CrossRefGoogle Scholar
  45. 45.
    Randløv A, Riisgård HU (1979) Efficiency of particle retention and filtration rate in four species of ascidians. Mar Ecol Prog Ser 1:55–59CrossRefGoogle Scholar
  46. 46.
    Sullivan BK, Suchman CL, Costello JH (1997) Mechanics of prey selection by ephyrae of the scyphomedusa Aurelia aurita. Mar Biol 130:213–222CrossRefGoogle Scholar
  47. 47.
    Riisgård HU, Jørgensen BH, Lundgreen K et al (2011) The exhalant jet of mussels Mytilus edulis. Mar Ecol Prog Ser 437:147–164CrossRefGoogle Scholar
  48. 48.
    Wang N, Li C (2015) The effect of temperature and food supply on the growth and ontogeny of Aurelia sp. 1 ephyrae. Hydrobiologia 754:157–167CrossRefGoogle Scholar
  49. 49.
    Kuplik Z, Kerem D, Angel DL (2015) Regulation of Cyanea capillata populations by predation on their planulae. J Plankton Res 37:1068–1073CrossRefGoogle Scholar
  50. 50.
    Lo W-T, Purcell JE, Hung J-J et al (2008) Enhancement of jellyfish (Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. ICES J Mar Sci 65:453–461CrossRefGoogle Scholar
  51. 51.
    Lo WT, Chen IL (2008) Population succession and feeding of scyphomedusae, Aurelia aurita, in a eutrophic tropical lagoon in Taiwan. Estuar Coast Shelf Sci 76:227–238CrossRefGoogle Scholar
  52. 52.
    Ishii H, Katsukoshi K (2010) Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. J Oceanogr 66:329–336CrossRefGoogle Scholar

Copyright information

© Japanese Society of Fisheries Science 2016

Authors and Affiliations

  • Kentaro S. Suzuki
    • 1
    Email author
  • Emi Kumakura
    • 2
  • Yasuyuki Nogata
    • 1
  1. 1.Environmental Science Research LaboratoryCentral Research Institute of Electric Power IndustryAbikoJapan
  2. 2.CERES Inc.AbikoJapan

Personalised recommendations