Skip to main content
Log in

Similarity and differences in the physicochemical properties of lactate dehydrogenase isozymes from different tissues of Japanese sandfish Arctoscopus japonicus

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Vertebrates have three genes (LDHA, LDHB, and LDHC) encoding skeletal muscle-, heart muscle- and testis-specific lactate dehydrogenase (LDH, E.C. 1.1.1.27), respectively. The muscle and heart LDHs are tetramers formed by polypeptides encoded by LDHA and LDHB, but not LDHC. The catalytic activity and physicochemical characteristics of testis LDH (tLDH) differs from those of the other two isozymes. There have been few kinetic analyses of fish tLDH. Moreover, the mechanism enabling enzymatic activity to be sustained in low temperature-adapted fish remains unclear. In the present study, tLDH and white muscle LDH (mLDH) were isolated from the Japanese sandfish Arctoscopus japonicas, the habitat of which ranges from 1.5 to 13 °C in temperature. The K m and V max of mLDH and tLDH with pyruvate were similar, but their thermostabilities differed. The of K m and V max values increased with increasing temperature between 5 and 40 °C, and the van’t Hoff ΔH values for pyruvate reduction by mLDH and tLDH were 35 and 31 kJ mol−1, respectively. Our findings indicate that LDH function and structure (thermal stability) are highly conserved in skeletal muscle and testis, but unique properties are acquired in each tissue depending on its function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sakuramoto K, Kitahara T, Sugiyama H (1997) Relationship between temperature and fluctuations in sandfish catch (Arctoscopus japonicus) in the coastal waters off Akita Prefecture. ICES J Mar Sci 54:1–12

    Article  Google Scholar 

  2. Morioka T, Hotta K (2005) Spawning of Japanese sandfish Arctoscopus japonicus brood stock reared in pumped deep seawater and control of hatching. Deep Ocean Water Res 6:19–29

    Google Scholar 

  3. Komoto R, Kudou H, Takatsu T (2011) Vertical distribution and feeding habits of Japanese sandfish (Arctoscopus japonicus) larvae and juveniles off Akita prefecture in the sea of Japan. Aquaculture Sci 59:615–630 (in Japanese with English abstract)

    Google Scholar 

  4. Vanderlinde RE (1985) Measurement of total lactate dehydrogenase activity. Ann Clin Lab Sci 15:13–31

    CAS  PubMed  Google Scholar 

  5. Feller G, Pauly JP, Smal A, O’Carra P, Gerday C (1991) The lactate dehydrogenase of the icefish heart: biochemical adaptations to hypoxia tolerance. Biochim Biophys Acta 1079:343–347

    Article  CAS  PubMed  Google Scholar 

  6. Richards JG, Sardella BA, Schulte PM (2008) Regulation of pyruvate dehydrogenase in the common killifish, Fundulus heteroclitus, during hypoxia exposure. Am J Physiol Regul Integr Comp Physiol 295:R979–R990

    Article  CAS  PubMed  Google Scholar 

  7. Soñanez-Organis JG, Rodriguez-Armenta M, Leal-Rubio B, Peregrino-Uriarte AB, Gómez-Jiménez S, Yepiz-Plascencia G (2012) Alternative splicing generates two lactate dehydrogenase subunits differentially expressed during hypoxia via HIF-1 in the shrimp Litopenaeus vannamei. Biochimie 94:1250–1260

    Article  PubMed  Google Scholar 

  8. Everse J, Kaplan NO (1973) Lactate dehydrogenases: structure and function. Adv Enzymol Relat Areas Mol Biol 37:61–133

    CAS  PubMed  Google Scholar 

  9. Holmes RS (1972) Evolution of lactate dehydrogenase genes. FEBS Lett 28:51–55

    Article  CAS  PubMed  Google Scholar 

  10. Li SS, Fitch WM, Pan YC, Sharief FS (1983) Evolutionary relationships of vertebrate lactate dehydrogenase isozymes A4 (muscle), B4 (heart), and C4 (testis). J Biol Chem 258:7029–7032

    CAS  PubMed  Google Scholar 

  11. Tsuji S, Qureshi MA, Hou EW, Fitch WM, Li SS (1994) Evolutionary relationships of lactate dehydrogenases (LDHs) from mammals, birds, an amphibian, fish, barley, and bacteria: LDH cDNA sequences from Xenopus, pig, and rat. Proc Natl Acad Sci USA 91:9392–9396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ansari AA (1981) Separation of rat lactate dehydrogenase isoenzyme C4 from other isoenzymes by affinity and ion-exchange chromatography. Biochem J 199:75–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coppes Z (1992) Lactate dehydrogenase in teleosts. The role of LDH-C4 isozyme. Comp Biochem Physiol B 102:673–677

    CAS  PubMed  Google Scholar 

  14. Wang Y, Wei L, Wei D, Li X, Xu L, Wei L (2015) Testis-specific lactate dehydrogenase (LDH-C4) in skeletal muscle enhances a pika’s sprint-running capacity in hypoxic environment. Int J Environ Res Public Health 12:9218–9236

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang D, Wei L, Wei D, Rao X, Qi X, Wang X, Ma B (2013) Testis-specific lactate dehydrogenase is expressed in somatic tissues of plateau pikas. FEBS Open Biol 3:118–123

    Article  CAS  Google Scholar 

  16. Gronczewska J, Ziętara MS, Biegniewska A, Skorkowski EF (2003) Enzyme activities in fish spermatozoa with focus on lactate dehydrogenase isoenzymes fromherring Clupea harengus. Comp Biochem Physiol B 134:399–406

    Article  PubMed  Google Scholar 

  17. Arakawa T, Ejima D, Tsumoto K, Ishibashi M, Tokunaga M (2007) Improved performance of column chromatography by arginine: dye-affinity chromatography. Protein Expr Purif 52:410–414

    Article  CAS  PubMed  Google Scholar 

  18. Nunomura W, Sasakura D, Shiba K, Nakamura S, Kidokoro S, Takakuwa, Y (2011) Structural stabilization of protein 4.1R FERM domain upon binding to apo-calmodulin: novel insights into the biological significance of the calcium-independent binding of calmodulin to protein 4.1R. Biochem J 440:367–374. Erratum in: Biochem J (2012) 443:327

  19. Yoshida M, Takakuwa Y (1997) Method for the simultaneous assay of initial velocities of lactate dehydrogenase isoenzymes following gel electrophoresis. J Biochem Biophys Methods 34:167–175

    Article  CAS  PubMed  Google Scholar 

  20. Kuroda I, Yoshida M (1986) A method of LDH isozyme assay by color developmental reagent using diaphorase on agarose gel electrophoresis. J Anal Biol Sci 9:49–57

    CAS  Google Scholar 

  21. Nunomura W (1991) C-reactive protein in eel: purification and agglutinating activity. Biochim Biophys Acta 1076:191–196

    Article  CAS  PubMed  Google Scholar 

  22. Kopperschläger G, Kirchberger J (1996) Methods for the separation of lactate dehydrogenases and clinical significance of the enzyme. J Chromatogr B Biomed 684:25–49

    Article  Google Scholar 

  23. LeVan KM, Goldberg E (1991) Properties of human testis-specific lactatedehydrogenase expressed from Escherichia coli. Biochem J 273:587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Javed MH (1990) Lactate dehydrogenase from gastrocnemius muscle of turtle. Acta Biochim Pol 37:233–242

    CAS  PubMed  Google Scholar 

  25. Low PS, Bada JL, Somero GN (1973) Temperature adaptation of enzymes: roles of the free energy, the enthalpy, and the entropy of activation. Proc Natl Acad Sci USA 70:430–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hochachka PW, Somero GN (1968) The adaptation of enzymes to temperature. Comp Biochem Physiol 27:659–668

    Article  CAS  PubMed  Google Scholar 

  27. Somero GN (2003) Protein adaptations to temperature and pressure: complementary roles of adaptive changes in amino acid sequence and internal milieu. Comp Biochem Physiol B Biochem Mol Biol 136:577–591

    Article  PubMed  Google Scholar 

  28. Somero GN (2004) Adaptation of enzymes to temperature: searching for basic ‘‘strategies’’. Comp Biochem Physiol B Biochem Mol Biol 139:321–333

    Article  PubMed  Google Scholar 

  29. Fields PA, Houseman DE (2004) Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus. Mol Biol Evol 21:2246–2255

    Article  CAS  PubMed  Google Scholar 

  30. Fields PA, Strothers CM, Mitchell MA (2008) Function of muscle-type lactate dehydrogenase and citrate synthase of the Galápagos marine iguana, Amblyrhynchus cristatus, in relation to temperature. Comp Biochem Physiol B Biochem Mol Biol 150:62–73

    Article  PubMed  Google Scholar 

  31. Place AR, Powers DA (1984) Purification and characterization of the lactate dehydrogenase (LDH-B4) allozymes of Fundulus heteroclitus. J Biol Chem 259:1299–1308

    CAS  PubMed  Google Scholar 

  32. Place AR, Powers DA (1984) Kinetic characterization of the lactate dehydrogenase (LDH-B4) allozymes of Fundulus heteroclitus. J Biol Chem 259:1309–1318

    CAS  PubMed  Google Scholar 

  33. Borgmann U, Laidler KJ, Moon T (1974) Kinetics and thermodynamics of lactate dehydrogenases from beef heart, beef muscle, and flounder muscle. Can J Biochem 153:1196–1206

    Google Scholar 

  34. Borgmann U, Moon TW (1975) A comparison of lactate dehydrogenase from an ectothermic and an endothermic animal. Can J Biochem 53:998–1004

    Article  CAS  PubMed  Google Scholar 

  35. Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nishiguchi Y, Ito N, Okada M (2010) Structure and function of lactate dehydrogenase from hagfish. Mar Drugs 8:594–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. White JL, Hackert ML, Buehner M, Adams MJ, Ford GC, Lentz PJ Jr, Smiley IE, Steindel SJ, Rossmann MG (1976) A comparison of the structures of apo dogfish M4 lactate dehydrogenase and its ternary complexes. J Mol Biol 102:759–779

    Article  CAS  PubMed  Google Scholar 

  38. Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374:547–562

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI grant numbers 15K09448 to WN and 15K09516 to HW, and by a private donation from Dr. Ken Satoh, Satoh Naíka Clinic, Sakata 998-0013, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Nunomura.

Ethics declarations

Conflict of interest

No conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugawara, K., Nakagawa, M., Yonezawa, M. et al. Similarity and differences in the physicochemical properties of lactate dehydrogenase isozymes from different tissues of Japanese sandfish Arctoscopus japonicus . Fish Sci 82, 519–527 (2016). https://doi.org/10.1007/s12562-016-0972-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-016-0972-1

Keywords

Navigation