Advertisement

Fisheries Science

, Volume 80, Issue 2, pp 341–351 | Cite as

Hormone-sensitive lipase in Japanese flounder Paralichthys olivaceus: the potential function of the inclinator muscle of fin as a lipid storage site

  • Anurak Khieokhajonkhet
  • Gen KanekoEmail author
  • Kazuyuki Ohara
  • Hirohito Shirakami
  • Hideki Ushio
Original Article Aquaculture

Abstract

Hormone-sensitive lipase (HSL) is an important regulator of lipolysis in mammals, but little is known about its function in other animals. For a better understanding of fish HSL and potential application of the HSL-mediated lipolysis in aquaculture, we cloned HSL cDNAs from Japanese flounder Paralichthys olivaceus. The full-length cDNAs of two HSL genes, designated HSL1 and HSL2, consisted of 2,922 and 2,832 bp, respectively. RT-PCR showed that their transcripts were abundant in the inclinator muscle of fin, liver, and skeletal muscle. Quantitative real-time PCR further revealed that the transcripts of HSL1 and HSL2 genes were broadly expressed in all tissues tested, with the highest abundance in the inclinator muscle of fin. The inclinator muscle of fin also contained many adipocytes. In addition to triacylglycerols, considerable amounts of cholesteryl esters and non-esterified fatty acids were detected in the lipids extracted from the inclinator muscle of fin. Finally, in situ hybridization localized the HSL1 transcripts to the adipocytes observed in the inclinator muscle of fin. Together, these results suggest that the inclinator muscle of fin is a lipid storage site that releases non-esterified fatty acids for aerobic fin movement, possibly through HSL-mediated lipolysis.

Keywords

Hormone-sensitive lipase Inclinator muscle of fin Japanese flounder Non-esterified fatty acid Triacylglycerol 

Notes

Acknowledgments

The author would like to thank Dr. Hina Satone for kind instruction in dissection of Japanese flounder. We thank all the laboratory members for the technical advice and helpful discussion. This research was supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B). Nos. 20780153 and 22780190, and Grant-in-Aid for Scientific Research (A). No. 21248027. This work was also partly supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences. A. K. was supported by a staff development scholarship from Naresuan University, Phitsanulok, Thailand.

Supplementary material

12562_2013_695_MOESM1_ESM.ppt (94 kb)
Supplementary material 1 (PPT 95 kb)

References

  1. 1.
    Holm C, Osterlund T, Laurell H, Contreras JA (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393PubMedCrossRefGoogle Scholar
  2. 2.
    Kraemer FB, Shen WJ (2002) Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 43:1585–1594PubMedCrossRefGoogle Scholar
  3. 3.
    Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ (2011) The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis. Gene 477:1–11PubMedCrossRefGoogle Scholar
  4. 4.
    Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737PubMedCrossRefGoogle Scholar
  5. 5.
    Harada K, Shen WJ, Patel S, Natu V, Wang J, Osuga J, Ishibashi S, Kraemer FB (2003) Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice. Am J Physiol Endocrinol Metab 285:E1182–E1195PubMedGoogle Scholar
  6. 6.
    Park SY, Kim HJ, Wang S, Higashimori T, Dong J, Kim YJ, Cline G, Li H, Prentki M, Shulman GI, Mitchell GA, Kim JK (2005) Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. Am J Physiol Endocrinol Metab 289:E30–E39PubMedCrossRefGoogle Scholar
  7. 7.
    Taschler U, Radner FP, Heier C, Schreiber R, Schweiger M, Schoiswohl G, Preiss-Landl K, Jaeger D, Reiter B, Koefeler HC, Wojciechowski J, Theussl C, Penninger JM, Lass A, Haemmerle G, Zechner R, Zimmermann R (2011) Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem 286:17467–17477PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Holm C, Osterlund T (1999) Hormone-sensitive lipase and neutral cholesteryl ester lipase. Methods Mol Biol 109:109–121PubMedGoogle Scholar
  9. 9.
    Lass A, Zimmermann R, Oberer M, Zechner R (2011) Lipolysis—a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 50:14–27PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Yeaman SJ (2004) Hormone-sensitive lipase—new roles for an old enzyme. Biochem J 379:11–22PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Vaughan M, Berger JE, Steinberg D (1964) Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239:401–409PubMedGoogle Scholar
  12. 12.
    Jocken JW, Roepstorff C, Goossens GH, van der Baan P, van Baak M, Saris WH, Kiens B, Blaak EE (2008) Hormone-sensitive lipase serine phosphorylation and glycerol exchange across skeletal muscle in lean and obese subjects: effect of beta-adrenergic stimulation. Diabetes 57:1834–1841PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Tansey JT, Sztalryd C, Hlavin EM, Kimmel AR, Londos C (2004) The central role of perilipin A in lipid metabolism and adipocyte lipolysis. IUBMB Life 56:379–385PubMedCrossRefGoogle Scholar
  14. 14.
    Daval M, Diot-Dupuy F, Bazin R, Hainault I, Viollet B, Vaulont S, Hajduch E, Ferre P, Foufelle F (2005) Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem 280:25250–25257PubMedCrossRefGoogle Scholar
  15. 15.
    Shakur Y, Holst LS, Landstrom TR, Movsesian M, Degerman E, Manganiello V (2001) Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog Nucleic Acid Res Mol Biol 66:241–277PubMedCrossRefGoogle Scholar
  16. 16.
    Holm C, Kirchgessner TG, Svenson KL, Fredrikson G, Nilsson S, Miller CG, Shively JE, Heinzmann C, Sparkes RS, Mohandas T et al (1988) Hormone-sensitive lipase: sequence, expression, and chromosomal localization to 19 cent-q13.3. Science 241:1503–1506PubMedCrossRefGoogle Scholar
  17. 17.
    Holst LS, Langin D, Mulder H, Laurell H, Grober J, Bergh A, Mohrenweiser HW, Edgren G, Holm C (1996) Molecular cloning, genomic organization, and expression of a testicular isoform of hormone-sensitive lipase. Genomics 35:441–447PubMedCrossRefGoogle Scholar
  18. 18.
    Ogasawara J, Nomura S, Rahman N, Sakurai T, Kizaki T, Izawa T, Ishida H, Haga S, Ohno H (2010) Hormone-sensitive lipase is critical mediators of acute exercise-induced regulation of lipolysis in rat adipocytes. Biochem Biophys Res Commun 400:134–139PubMedCrossRefGoogle Scholar
  19. 19.
    Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, Bergman RN (2005) Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am J Physiol Endocrinol Metab 288:E454–E461PubMedCrossRefGoogle Scholar
  20. 20.
    Hoenig M, McGoldrick JB, deBeer M, Demacker PN, Ferguson DC (2006) Activity and tissue-specific expression of lipases and tumor-necrosis factor alpha in lean and obese cats. Domest Anim Endocrinol 30:333–344PubMedCrossRefGoogle Scholar
  21. 21.
    Feller G, Thiry M, Gerday C (1990) Sequence of a lipase gene from the antarctic psychrotroph Moraxella TA144. Nucleic Acids Res 18:6431PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Langin D, Laurell H, Holst LS, Belfrage P, Holm C (1993) Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc Natl Acad Sci USA 90:4897–4901PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Cygler M, Schrag JD, Sussman JL, Harel M, Silman I, Gentry MK, Doctor BP (1993) Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci 2:366–382PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Sato M, Yoshinaka R, Nishinaka Y, Morimoto H, Kojima T, Yamamoto Y, Ikeda S (1986) Comparison of nutritive components in meat of wild and cultured bastard halibut Paralichthys olivaceus. Nippon Suisan Gakkaishi 52:1043–1047CrossRefGoogle Scholar
  25. 25.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917Google Scholar
  28. 28.
    Kaneko G, Yamada T, Han Y, Hirano Y, Khieokhajonkhet A, Shirakami H, Nagasaka R, Kondo H, Hirono I, Ushio H, Watabe S (2013) Differences in lipid distribution and expression of peroxisome proliferator-activated receptor gamma and lipoprotein lipase genes in torafugu and red seabream. Gen Comp Endocrinol 184:51–60Google Scholar
  29. 29.
    Kittilson JD, Reindl KM, Sheridan MA (2011) Rainbow trout (Oncorhynchus mykiss) possess two hormone-sensitive lipase-encoding mRNAs that are differentially expressed and independently regulated by nutritional state. Comp Biochem Physiol A Mol Integr Physiol 158:52–60PubMedCrossRefGoogle Scholar
  30. 30.
    Feller G, Thiry M, Arpigny JL, Mergeay M, Gerday C (1989) Lipases from psychrotrophic antarctic bacteria. FEMS Microbiol Lett 66:239–243CrossRefGoogle Scholar
  31. 31.
    Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y (2008) Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130:263–279PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Cruz-Garcia L, Saera-Vila A, Navarro I, Calduch-Giner J, Perez-Sanchez J (2009) Target for TNFalpha-induced lipolysis in gilthead sea bream (Sparus aurata L.) adipocytes isolated from lean and fat juvenile fish. J Exp Biol 212:2254–2260PubMedCrossRefGoogle Scholar
  33. 33.
    Han C, Wen X, Zheng Q, Li H (2011) Effect of starvation on activities and mRNA expression of lipoprotein lipase and hormone-sensitive lipase in tilapia (Oreochromis niloticus × O. areus). Fish Physiol Biochem 37:113–122PubMedCrossRefGoogle Scholar
  34. 34.
    Davidson WS, Koop BF, Jones SJ, Iturra P, Vidal R, Maass A, Jonassen I, Lien S, Omholt SW (2010) Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol 11:403PubMedCentralPubMedGoogle Scholar
  35. 35.
    Koop BF, Davidson WS (2008) Genomics and the genome duplication in salmonids. In: Tsukamoto K et al (eds) Fisheries for global welfare and environment. TERRAPUB, Tokyo, pp 77–86Google Scholar
  36. 36.
    Haemmerle G, Zimmermann R, Strauss JG, Kratky D, Riederer M, Knipping G, Zechner R (2002) Hormone-sensitive lipase deficiency in mice changes the plasma lipid profile by affecting the tissue-specific expression pattern of lipoprotein lipase in adipose tissue and muscle. J Biol Chem 277:12946–12952PubMedCrossRefGoogle Scholar
  37. 37.
    Aubourg SP, Medina I (1999) Influence of storage time and temperature on lipid deterioration during cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) frozen storage. J Sci Food Agric 79:1943–1948CrossRefGoogle Scholar
  38. 38.
    Prego R, Pazos M, Medina I, Aubourg SP (2012) Comparative chemical composition of different muscle zones in angler (Lophius piscatorius). J Food Compost Anal 28:81–87CrossRefGoogle Scholar
  39. 39.
    Chaijan M, Jongjarenorak A, Phatcharat S, Benjakul S, Rawdkuen S (2010) Chemical compositions and characteristics of farm raised giant catfish (Pangasianodon gigas) muscle. J Food Sci Technol 43:452–457Google Scholar
  40. 40.
    Han Y, Kaneko G, Nagasaka R, Kondo H, Hirono I, Takahashi SI, Watabe S, Ushio H (2013) Distribution of adipocyte-related cells in skeletal muscle of rainbow trout Oncorhynchus mykiss. Fish Sci 79:143–148CrossRefGoogle Scholar
  41. 41.
    Smith FD, Samelson BK, Scott JD (2011) Discovery of cellular substrates for protein kinase A using a peptide array screening protocol. Biochem J 438:103–110PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Wang J, Shen WJ, Patel S, Harada K, Kraemer FB (2005) Mutational analysis of the “regulatory module” of hormone-sensitive lipase. Biochemistry 44:1953–1959PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2014

Authors and Affiliations

  • Anurak Khieokhajonkhet
    • 1
  • Gen Kaneko
    • 1
    Email author
  • Kazuyuki Ohara
    • 1
  • Hirohito Shirakami
    • 1
  • Hideki Ushio
    • 1
  1. 1.Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations