Skip to main content
Log in

Role of high zinc levels in the stress defense of common carp

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

We studied the link between high zinc levels and the extreme stress tolerance of common carp. Fish under stress showed much higher plasma cortisol levels than controls. Stress or cortisol injection induced large changes in zinc levels in the common carp but not in grass carp, silver carp or tilapia. The effect of 5 days of anoxia and 4 subsequent days of recovery on cortisol and zinc contents in the common carp was investigated. Elevated plasma cortisol resulting from anoxia was correlated with decreased zinc in digestive tract tissue and increased zinc in the head kidney. Zinc was mobilized in the common carp while under stress. Changes in cortisol and zinc contents were reversible during the subsequent recovery from anoxia. Under stress, protein-bound zinc levels increased in the head kidney cell nuclei of common carp as cortisol increased. Zinc and cortisol were bound to the same protein, which was bound to DNA. The protein is likely a glucocorticoid receptor. An increase in immature red blood cells in stressed common carp was observed. Zinc was involved in the stress erythropoiesis response. Zinc may play an important role in stress defense in the common carp via the glucocorticoid receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hambidge KM, Casey CE, Krebs NF (1986) Zinc. In: Mertz W (ed) Trace elements in human and animal nutrition, 4th edn. Academic Press, Orlando, pp 3–28

    Google Scholar 

  2. Hogstrand C, Wood CM (1996) The physiology and toxicology of zinc in fish. In: Taylor EW (ed) Toxicology of aquatic pollution: physiological, cellular and molecular approaches. Cambridge university press, Cambridge, pp 61–84

    Chapter  Google Scholar 

  3. Sun LT, Jeng SS (1998) Comparative zinc concentrations in tissues of common carp and other aquatic organisms. Zool Stud 37:184–190

    CAS  Google Scholar 

  4. Jeng SS, Lin TY, Wang MS, Chang YY, Chen CY, Chang CC (2008) Anoxia survival in common carp and crucian carp is related to high zinc concentration in tissues. Fish Sci 74:627–634

    Article  CAS  Google Scholar 

  5. Donaldson EM (1981) The pituitary-interrenal axis as an indicator of stress in fish. In: Pickering AD (ed) Stress and fish. Academic Press, London, pp 11–47

    Google Scholar 

  6. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

  7. Balm PHM, Pepels P, Helfrich S, Hovens MLM, Bonga SEW (1994) Adrenocorticotropic hormone in relation to interrenal function during stress in tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 96:347–360

    Article  PubMed  CAS  Google Scholar 

  8. Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26

    Article  Google Scholar 

  9. Ruane NM, Huisman EA, Komen J (2001) Plasma cortisol and metabolite level profiles in two isogenic strains of common carp during confinement. J Fish Biol 59:1–12

    Article  CAS  Google Scholar 

  10. Van Raaij MTM, Van den Thillart GEEJM, Vianen GJ, Pit DSS, Balm PHM, Steffens AB (1996) Substrate mobilization and hormonal changes in rainbow trout (Oncorhynchus mykiss, L.) and common carp (Cyprinus carpio, L.) during deep hypoxia and subsequent recovery. J Comp Physiol B 166:443–452

    Article  Google Scholar 

  11. Chen GR, Sun LT, Lee YH, Chang CF (1996) Characteristics of blood in common carp, Cyprinus carpio, exposed to low temperatures. J Appl Aquac 5:21–31

    Article  Google Scholar 

  12. Tanck MWT, Booms GHR, Eding EH, Bonga SEW, Komen J (2000) Cold shocks: a stressor for common carp. J Fish Biol 57:881–894

    Article  Google Scholar 

  13. Ogino C, Takeuchi L, Takeda H, Watanabe T (1979) Availability of dietary phosphorous in carp and rainbow trout. Bull Jpn Soc Sci Fish 45:1527–1532

    CAS  Google Scholar 

  14. Jeng SS, Yau JY, Chen YH, Lin TY, Chung YY (2007) High zinc in the erythrocyte plasma membranes of common carp Cyprinus carpio. Fish Sci 73:421–428

    Article  CAS  Google Scholar 

  15. Freshney RI (2000) Culture of animal cells: a manual of basic technique, 4th edn. Wiley-Liss, New York, p 235

    Google Scholar 

  16. Liao HJ, Chen YH, Jeng SS (2006) Association of zinc with connective tissue in the digestive tract of common carp. Fish Sci 72:893–902

    Article  CAS  Google Scholar 

  17. Chen YH, Liao HJ, Jeng SS (2008) Separation and characterization of connective tissue cells expressing 43-kDa zinc-binding protein from common carp. Fish Sci 74:1322–1329

    Article  CAS  Google Scholar 

  18. Speckner W, Schindler J, Albers C (1989) Age-dependent changes in volume and haemoglobin content of erythrocytes in the carp (Cyprinus carpio L.). J Exp Biol 141:133–149

    PubMed  CAS  Google Scholar 

  19. Rothmann C, Levinshal T, Timan B, Avtalion RR, Malik Z (2000) Spectral imaging of red blood cells in experimental anemia of Cyprinus carpio. Comp Biochem Physiol A 125:75–83

    Article  CAS  Google Scholar 

  20. Tripathi NK, Latimer KS, Burnley VV (2004) Hematologic reference intervals for koi (Cyprinus carpio), including blood cell morphology, cytochemistry, and ultrastructure. Vet Clin Pathol 33:74–83

    Article  PubMed  Google Scholar 

  21. Kito H, Ose Y, Mizuhira V, Sato T, Ishikawa T, Tazawa T (1982) Separation and purification of (Cd, Cu, Zn)-metallothionein in carp hepato-pancreas. Comp Biochem Physiol C 73:121–127

    Article  PubMed  CAS  Google Scholar 

  22. Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–113

    Article  CAS  Google Scholar 

  23. Hyllner SJ, Andersson T, Haux C, Olsson PE (1989) Cortisol induction of metallothionein in primary culture of rainbow trout hepatocytes. J Cell Physiol 139:24–28

    Article  PubMed  CAS  Google Scholar 

  24. Wu SM, Chou YY, Deng AN (2002) Effects of exogenous cortisol and progesterone on metallothionein expression and tolerance to waterborne cadmium in tilapia (Oreochromis mossambicus). Zool Stud 41:111–118

    CAS  Google Scholar 

  25. Jeng SS, Wang JT, Sun LT (1999) Zinc and zinc binding substances in the tissues of common carp. Comp Biochem Physiol B 122:461–468

    Article  Google Scholar 

  26. Sun LT, Jeng SS (1999) Accumulation of zinc from diet and its release in common carp. Fish Physiol Biochem 20:313–324

    Article  CAS  Google Scholar 

  27. Stickney RR (2000) Tilapia culture. In: Stickney RR (ed) Encyclopedia of aquaculture. Wiley, New York, pp 934–941

    Google Scholar 

  28. Favier AA, Faure H, Arnaud J (1985) Determination of ultrafilterable zinc, transferrin bound and albumin bound zinc using ultrafiltration and flameless AAS. In: Mills CF, Bremner I, Chesters JK (eds) Trace elements in man and animals. Commonwealth Agricultural Bureau, Slough, pp 666–670

    Google Scholar 

  29. Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411

    Article  PubMed  CAS  Google Scholar 

  30. Hardy RW, Sullivan CV, Koziol AM (1987) Absorption, body distribution, and excretion of dietary zinc by rainbow trout. Fish Physiol Biochem 3:133–143

    Article  CAS  Google Scholar 

  31. Spry DJ, Hodson PV, Wood CM (1988) Relative contributions of dietary and waterborne zinc in Salmo gairdneri. Can J Fish Aquat Sci 45:32–41

    Article  CAS  Google Scholar 

  32. Jeng SS, Lian JL (1994) Comparison of zinc absorption between common carp and other fresh water fishes. Zool Stud 37:78–85

    Google Scholar 

  33. Jeng SS, Wang MS (2003) Isolation of a Zn-binding protein mediating cell adhesion from common carp. Biochem Biophys Res Commun 309:733–742

    Article  PubMed  CAS  Google Scholar 

  34. Wang MS, Jeng SS (2006) Binding characteristics of the Zn-binding membrane protein from common carp. Fish Sci 72:437–445

    Article  CAS  Google Scholar 

  35. Jeng SS, Sun LT (1981) Effects of dietary zinc levels on zinc concentrations in tissues of common carp. J Nutr 111:134–140

    PubMed  CAS  Google Scholar 

  36. Brown ED, Chan W, Smith JC (1978) Bone mineralization during a developing zinc deficiency. Proc Soc Exp Biol Med 157:211–214

    PubMed  CAS  Google Scholar 

  37. Wu FYH, Wu CW (1987) Zinc in DNA replication and transcription. Annu Rev Nutr 7:251–272

    Article  PubMed  CAS  Google Scholar 

  38. Beato M, Herrlich P, Schütz G (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857

    Article  PubMed  CAS  Google Scholar 

  39. Iwama GK, Afonso LOB, Vijayan MM (2006) Stress in fishes. In: Evans DH, Claiborne JB (eds) The physiology of fishes. Taylor & Francis, Boca Raton, pp 319–342

    Google Scholar 

  40. Stolte EH, de Mazon AF, Leon-Koosterziel KM, Jesiak M, Bury NR, Sturm A, Savelkoul HFJ, van Kemenade BMLV, Flik G (2008) Corticosteroid receptors involved in stress regulation in common carp, Cyprinus carpio. J Endocrinol 198:403–417

    Article  PubMed  CAS  Google Scholar 

  41. Stolte EH, Chadzinska M, Przybylska D, Flik G, Savelkoul HFJ, Verburg-van Kemenade BML (2009) The immune response differentially regulates Hsp70 and glucocorticoid receptor expression in vitro and in vivo in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 27:9–16

    Article  PubMed  CAS  Google Scholar 

  42. Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Article  Google Scholar 

  43. Vijayan MM, Prunet P, Boone AN (2005) Xenobiotic impact on corticosteroid signaling. In: Moon TW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 6. Elsevier, Amsterdam, pp 365–394

    Google Scholar 

  44. Murad A, Houston AH, Samson L (1990) Haematological response to reduced oxygen-carrying capacity, increased temperature and hypoxia in goldfish, Carassius auratus L. J Fish Biol 36:289–305

    Article  Google Scholar 

  45. Houston AH, Murad A (1995) Erythrodynamics in fish: recovery of the goldfish Carassius auratus from acute anemia. Can J Zool 74:411–418

    Article  Google Scholar 

  46. Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt HM, Steinlein P, Schütz G, Beug H (1999) The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev 13:2996–3002

    Article  PubMed  CAS  Google Scholar 

  47. Hrubec TC, Smith AS (2000) Hematology of fish. In: Feldman BF, Zinkl JG, Jain NC (eds) Schalm’s veterinary hematology, 5th edn. Lippincott Williams & Wilkins, Baltimore, pp 1120–1125

    Google Scholar 

  48. Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72:449–489

    PubMed  CAS  Google Scholar 

  49. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  PubMed  CAS  Google Scholar 

  50. Kodama T, Shimizu N, Yoshikawa N, Makino Y, Ouchida R, Okamoto K, Hisada T, Nakamura H, Morimoto C, Tanaka H (2003) Role of the glucocorticoid receptor for regulation of hypoxia-dependent gene expression. J Biol Chem 278:33384–33391

    Article  PubMed  CAS  Google Scholar 

  51. Kassahn KS, Crozier RH, Pörtner HO, Caley MJ (2009) Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biol Rev 84:277–292

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Mr. Chin-Tsung Chen, Mr. Jung-Yu Lo, Miss Yi-Chun Hsieh and Miss Szu-Wei Fang for their technical assistance. This research was supported by the National Science Council, Taiwan, project no. NSC 97-2313-B-019-008-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen-Shyong Jeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, TY., Chen, YH., Liu, CL. et al. Role of high zinc levels in the stress defense of common carp. Fish Sci 77, 557–574 (2011). https://doi.org/10.1007/s12562-011-0374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-011-0374-3

Keywords

Navigation