Skip to main content
Log in

Partial characterization of alkaline proteases from viscera of vermiculated sailfin catfish Pterygoplichthys disjunctivus Weber, 1991

  • Original Article
  • Food Science and Technology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Vermiculated sailfin catfish (Pterygoplichthys disjunctivus, Weber, 1991), a member of the Loricariidae family and an invasive species of several inland waters around the world, possess an enormous digestive tract representing about 10% of fish weight. Thus, the aim of this study was to partially characterize proteases from their digestive tracts. Azocasein digestion of the crude extract of intestine at different pH values and temperatures revealed the presence of alkaline proteases with optimum activities at pH 9.0 and 50°C. Incubation assays of the crude extract with inhibitors such as phenyl methyl sulfonyl fluoride, N-α-p-tosyl-l-lysine chloromethyl ketone, N-tosyl-phenyalanine chloromethyl ketone, benzamidine, pepstatin A and ethylenediamine tetra-acetic acid showed that trypsin and chymotrypsin are the main alkaline proteinases present. Zymography showed that the crude extract of Pterygoplichthys disjunctivus viscera contained proteases with molecular masses ranging from 21.5 to 116 kDa. Trypsin and chymotrypsin were inhibited by the following ions in decreasing order: Hg2+, Fe2+, Cu2+, Li+, Mg2+, K+, while Mn2+, and Ca2+ had no effect. Activities decreased continuously as the NaCl concentration increased from 0 to 30%. These results constitute important background information for future studies and for the potential biotechnological use of the crude digestive extract from this invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Díaz-López M, Moyano-López F, Alarcón-López F, García-Carreño F, Navarrete del Toro M (1998) Characterization of fish acid proteases by substrate-gel electrophoresis. Comp Biochem Physiol B 121:369–377

    Article  PubMed  Google Scholar 

  2. Gupta R, Beg Q, Larenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  PubMed  CAS  Google Scholar 

  3. Johnvesly B, Naik G (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem 37:139–144

    Article  CAS  Google Scholar 

  4. Haard N (1992) A review of proteolytic enzymes from marine organisms and their application in the food industry. J Aquatic Food Product Technol 1:17–35

    Article  CAS  Google Scholar 

  5. Bezerra R, Lins E, Alencar R, Paiva P, Chaves M, Coelho L (2005) Alkaline proteinase form intestine of Nile tilapia (Oreochromis niloticus). Process Biochem 40:1829–1834

    Article  CAS  Google Scholar 

  6. Souza A, Amaral I, Espíritu Santo A, Carvalho L, Bezerra R (2007) Trypsin-like enzyme from intestine and pyloric caeca of spotted goatfish (Pseudupeneus maculatus). Food Chem 100:1429–1434

    Article  CAS  Google Scholar 

  7. Gibbs M, Shields J, Lock D, Talmadge K, Farrell T (2008) Reproduction in an invasive exotic catfish Pterygoplichthys disjunctivus in Volusia Blue Spring, Florida, USA. J Fish Biol 73:1562–1572

    Article  Google Scholar 

  8. Nico L, Loftus W, Reid J (2009) Interactions between non-native armored suckermouth catfish (Loricariidae: Pterygoplichthys) and native Florida manatee (Trichechus manatus latirostris) in artesian springs. Aquat Invasions 4:511–519

    Article  Google Scholar 

  9. Simpson B (2000) Digestive proteases from marine animals. In: Haard N, Simpson B (eds) Seafood enzymes. Marcel Dekker, New York, pp 76–77

    Google Scholar 

  10. Castillo-Yáñez F, Pacheco-Aguiar R, García-Carreño F, Toro M (2005) Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comp Biochem Physiol B 140:91–98

    Google Scholar 

  11. Heu M, Kim H, Pyeun J (1995) Comparison of trypsin and chymotrypsin from the viscera of anchovy (Engraulis japonica). Comp Biochem Physiol B 112:557–568

    Article  PubMed  CAS  Google Scholar 

  12. Whitaker J (1994) Principles of enzymology for the food sciences, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  13. Stauffer C (1989) Effect of pH on activity. In: Stauffer C (ed) Enzyme assays for food scientist. Van Nostrand Reinhold, New York, pp 63–117

    Google Scholar 

  14. Liu Z-Y, Wang Z, Xu S-Y, Xu L-N (2008) Partial characterization and activities distribution of proteases along the intestine of grass carp, Ctenopharyngodon idella (Val.). Aquac Nutr 14:31–39

    Article  CAS  Google Scholar 

  15. Erlanger BF, Kokowski N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  PubMed  CAS  Google Scholar 

  16. Hummel B (1959) A modified spectrophotometric determination of chymotrypsin, trypsin and thrombin. Can J Biochem Physiol 37:1393–1399

    Article  PubMed  CAS  Google Scholar 

  17. Laemmli U (1970) Cleavage of structural proteins during assembly of the head bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  18. Celis-Guerrero L, García-Carreño F, Navarrete del Toro M (2004) Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus). Mar Biotechnol 6:262–269

    Article  PubMed  CAS  Google Scholar 

  19. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  20. Natalia Y, Hashim R, Ali A, Chong A (2004) Characterization of digestive enzymes in carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture 223:305–320

    Article  Google Scholar 

  21. Das K, Tripathi S (1991) Studies on the digestive enzyme of grass carp, Ctenopharyngodon idella (Val.). Aquaculture 92:21–32

    Article  CAS  Google Scholar 

  22. Chiu S, Pan B (2002) Digestive proteinase activities of juvenile and adult eel (Anguilla japonica). Aquaculture 205:141–156

    Article  CAS  Google Scholar 

  23. Chong A, Hashim R, Lee C, Ahyaudini B (2002) Partial characterization and activities of proteinases from digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture 203B:321–333

    Article  Google Scholar 

  24. Díaz-Tenorio L, García-Carreño F, Navarrete del Toro M (2006) Characterization and comparison of digestive proteinases of the Cortez swimming crab, Callinectes bellicosus, and the arched swimming crab, Callinectes arcuatus. Invertebr Biol 125:125–135

    Google Scholar 

  25. Kishimura H, Klomklao S, Benjakul S, Chun B (2008) Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragrama chalcogramma). Food Chem 106:194–199

    Article  CAS  Google Scholar 

  26. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson B (2007) Purification and characterization of trypsins from the spleen of skipjack tuna (Katsuwonus pelamis). Food Chem 100:1580–1589

    Article  CAS  Google Scholar 

  27. Castillo-Yáñez F, Pacheco-Aguilar R, García-Carreño F, Toro M, López M (2006) Purification and biochemical characterization of chymotrypsin from the viscera of Monterey sardine (Sardinops sagax caerulea). Food Chem 99:252–259

    Google Scholar 

  28. Yang F, Su W, Lu B, Wu T, Sun L, Hara K, Cao M (2009) Purification and characterization of chymotrypsins from the hepatopancreas of crucian carp (Carassius auratus). Food Chem 116:860–866

    Article  CAS  Google Scholar 

  29. Moyano F, Díaz M, Alarcón F, Sarasquete M (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15:121–130

    Article  CAS  Google Scholar 

  30. Munilla-Moran R, Stark J (1990) Metabolism in marine flatfish: VI. Effect of nutritional state of digestion in turbot, Scophtalmus maximus (L.). Comp Biochem Physiol 95:625–634

    Google Scholar 

  31. Jonas E, Ragyanssszki M, Olah J, Boross L (1983) Proteolytic digestive enzymes of carnivorous (Silurus glanis L.), herbivorous (Hypophtlamichthys molitrix Val.) and omnivorous (Cyprinus carpio) fishes. Aquaculture 30:145–154

    Article  CAS  Google Scholar 

  32. Özdilek SY (2007) Possible threat for Middle East inland water: an exotic and invasive species, Pterygoplichthys disjunctivus (Weber, 1991) in Asi River, Turkey (Pisces: Loricariidae). EU J Fish Aquat Sci 24:303–306

    Google Scholar 

  33. Glass H, MacDonald N, Moran R, Stark J (1989) Digestion of protein in different marine species. Comp Biochem Physiol 94:607–611

    Google Scholar 

  34. Cohen T, Gertler A, Birk Y (1981) Pancreatic proteolytic enzymes from carp Cyprinus carpio. II. Kinetic properties and inhibition studies of trypsin, chymotrypsin and elastase. Comp Biochem Physiol B 69:647–653

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Fondo Mixto CONACYT-Gobierno del Estado de Michoacán under the project “Desarrollo Tecnológico para el Aprovechamiento e Industrialización del Pez Diablo en la Región del Bajo Balsas en Michoacán, FOMIX # 37147.” Authors also wish to thank Dra. Lourdes Mariana Díaz Tenorio(ITSON) for her support to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Pacheco-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villalba-Villalba, A.G., Pacheco-Aguilar, R., Ramirez-Suarez, J.C. et al. Partial characterization of alkaline proteases from viscera of vermiculated sailfin catfish Pterygoplichthys disjunctivus Weber, 1991. Fish Sci 77, 697–705 (2011). https://doi.org/10.1007/s12562-011-0372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-011-0372-5

Keywords

Navigation