Fisheries Science

, Volume 77, Issue 1, pp 1–21 | Cite as

Mechanisms and control of vitellogenesis in crustaceans

Review Article

Abstract

Crustaceans produce complex yolk proteins to meet the substrate and energy requirements of embryonic development. Early electron microscopic investigations point to a biphasic yolk synthesis, first within the ovary, followed by heterosynthesis at extra-ovarian sites. Recent advances in molecular techniques have enhanced our understanding of the genetic control of yolk synthesis in crustaceans. Amino acid sequencing of crustacean vitellogenin (Vg) has enabled the elucidation of the cDNA sequence associated with it, the identification of genes, and the examination of their expression patterns in different tissues. Yolk processing in crustaeans involves cleavage of the pro-Vg at consensus sites by subtilisin-like endoproteases within the hepatopancreas, hemolymph and oocytes. The structural elucidation of crustacean yolk proteins, as well as the comparison of amino acid sequences of vitellogenins from various crustacean species, has revealed molecular phylogenetic relationships not only among them but also with other large lipid transfer lipoproteins of disparate function. The combinatorial effects of eyestalk neuropeptides and a variety of trophic hormones achieve the hormonal coordination of molting and reproduction. Biogenic amines secreted by the central nervous system may also play an integrative role by stimulating neuropeptide secretion.

Keywords

Vitellogenesis Vitellogenin receptor Yolk processing Neuropeptides Methyl farnesoate Ecdysteroids 17β-Estradiol 

Notes

Acknowledgments

This review is fondly dedicated to Dr. Marcy N. Wilder of the Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, whose scientific association has significantly enhanced my understanding of crustacean vitellogenesis. I am thankful to my students, Dr. Vidya Jayasankar of the Central Marine Fisheries Research Institute, Chennai, and Dr. Sudha Warrier of the Manipal Medical College, Bangalore, for critically reading through the manuscript. I also thank Dr. C.P. Balasubramanian and Dr. Sherly Tom of the Central Institute of Brackish Water Aquaculture, Chennai for useful discussion. I am also grateful to Mr. S. Muthu Kumar of the National Institute of Ocean Technology, Chennai for his help in the homology study of vitellogenins. I finally thank the Indian National Science Academy for the award of the position of Senior Scientist.

References

  1. 1.
    Adiyodi RG, Subramoniam T (1983) Arthropoda—Crustacea. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol I. Oogenesis, oviposition, oosorption. Wiley, New York, pp 443–495Google Scholar
  2. 2.
    Wilder MN, Subramoniam T, Aida K (2002) Yolk proteins of Crustacea. In: Raikhel AS, Sappington TW (eds) Reproductive biology of invertebrates, vol XII (part A). Science Publishers Inc., Enfield, pp 131–174Google Scholar
  3. 3.
    Wallace RA, Walker SL, Hausehka PV (1967) Crustacean lipovitellin. Isolation and characterization of the major high-density lipoprotein from the eggs of decapods. Biochemistry 6:1582–1590PubMedCrossRefGoogle Scholar
  4. 4.
    Tirumalai R, Subramoniam T (1992) Purification and characterization of vitellogenin and liprovitellins of the sand crab Emerita asiatica: molecular aspects of crab yolk proteins. Mol Reprod Dev 33:16–26PubMedCrossRefGoogle Scholar
  5. 5.
    Thirumalai R, Subramoniam T (2001) Carbohydrate components of lipovitellin of the sand crab Emerita asiatica. Mol Reprod Dev 58:54–62CrossRefGoogle Scholar
  6. 6.
    Khalaila I, Peter-Katalinic J, Tsang C, Radcliffe M, Aflahu D, Harvey DJ, Dwek RA, Rudd PM, Sagi A (2004) Structural characterization of the N-glycan moity and site of glycosylation in vitellogenin from the decapod crustacean Cherax quadricarinatus. Glycobiology 14:767–774PubMedCrossRefGoogle Scholar
  7. 7.
    Meusy JJ, Payen G (1988) Female reproduction in malacostracan Crustacea. Zool Sci 5:217–265Google Scholar
  8. 8.
    Lui CW, O’ Connor JD (1977) Biosynthesis of crustacen lipovitellin. III The incorporation of labeled amino acids into the purified lipovitellin of the crab Pachygrapsus crassipes. J Exp Zool 195:105–108CrossRefGoogle Scholar
  9. 9.
    Yano I, Chinzei Y (1987) Ovary is the site of vitellogenin synthesis in kuruma prawn, Penaeus japonicus. Comp Biochem Physiol 86B:213–218Google Scholar
  10. 10.
    Fainzilber M, Tom M, Shafir S, Applebaum SW, Lubzens E (1992) Is there extraovarian synthesis of vitellogenin in penaeid shrimp? Biol Bull 183:233–241CrossRefGoogle Scholar
  11. 11.
    Kim YK, Tsutsui N, Kawazoe I, Okumura T, Kaneko T, Aida K (2005) Localization and developmental expression of mRNA for cortical rod protein in kuruma prawn Marsupenaeus japonicus. Zool Sci 22:675–680PubMedCrossRefGoogle Scholar
  12. 12.
    Okumura T, Kim YK, Kawazoe I, Yamano K, Tsutsui N, Aida K (2006) Expression of vitellogenin and cortical rod proteins during induced ovarian development by eyestalk ablation in the kuruma prawn, Marsupenaeus japonicus. Comp Biochem Physiol 143A:246–253Google Scholar
  13. 13.
    Khayat M, Lubzens E, Tietz A, Funkenstein B (1994) Are vitellin and vitellogenin coded by one gene in the marine shrimp Penaeus semisulcatus? J Mol Endocrinol 12:251–254PubMedCrossRefGoogle Scholar
  14. 14.
    Tsutsui N, Kawazoe I, Ohira T, Jasmani S, Yang W-J, Wilder MN, Aida K (2000) Molecular characterization of a cDNA encoding vitellogenin and its expression in the kuruma prawn, Penaeus japonicus. Zool Sci 17:651–660PubMedCrossRefGoogle Scholar
  15. 15.
    Tsang WS, Quackenbush LS, Chow BK, Tiu SH, He JG, Chan SM (2003) Organization of the shrimp vitellogenin gene. Evidence of multiple genes and tissue specific expression by the ovary and hepatopancreas. Gene 303:99–109PubMedCrossRefGoogle Scholar
  16. 16.
    Tsutsui N, Katayama H, Ohira T, Nagasawa H, Wilder MN, Aida K (2005) The effects of crustacean hyperglycemic hormone-family peptides on vitellogenin gene expression in the kuruma prawn, Marsupenaeus japonicus. Gen Comp Endocrinol 144:232–239PubMedCrossRefGoogle Scholar
  17. 17.
    Avarre J-C, Michelis R, Tietz A, Lubzens E (2003) Relationship between vitellogenin and vitellin in a marine shrimp (Penaeus semisulcatus) and molecular characterization of vitellogenin complementary DNAs. Biol Reprod 69:355–364PubMedCrossRefGoogle Scholar
  18. 18.
    Phiriyangkul P, Puengyam P, Jakobsen IB, Utarabhand P (2007) Dynamics of vitellogenin mRNA expression during vitellogenesis in the banana shrimp Penaeus (Fenneropenaeus merguiensis) using real-time PCR. Mol Reprod Dev 74:1198–1207PubMedCrossRefGoogle Scholar
  19. 19.
    Kung SY, Chan SM, Hui JH, Tsang WS, Mak A, He JG (2004) Vitellogenesis in the sand shrimp, Metapenaeus ensis: the contribution from the hepatopancreas-specific vitellogenin gene (MeVg2). Biol Reprod 71:863–870PubMedCrossRefGoogle Scholar
  20. 20.
    Tiu SH, Hui JH, Mak AS, He JG, Chan SM (2006) Equal contribution of hepatopancreas and ovary to the production of vitellogenin (PmVg 1) transcripts in the tiger shrimp, Penaeus monodon. Aquaculture 254:666–674CrossRefGoogle Scholar
  21. 21.
    Lee RF, Puppione DL (1998) Lipoproteins I and II from the hemolymph of the blue crab Callinectes sapidus: lipoprotein II associated with vitellogenesis. J Exp Zool 248:278–279CrossRefGoogle Scholar
  22. 22.
    Komatsu M, Andi S (1998) A very-high-density lipoprotein with clotting ability from hemolymph of sand crayfish, Ibcacus ciliatus. Biosci Biotechnol Biochem 62:459–463PubMedCrossRefGoogle Scholar
  23. 23.
    Lubzens E, Ravid T, Khayat M, Daube N, Tiez A (1997) Isolation and characterization of the high-density lipoproteins from the hemolymph and ovary of the penaeid shrimp Penaeus semisulcatus (de Haan): apoproteins and lipids. J Exp Zool 278:339–348PubMedCrossRefGoogle Scholar
  24. 24.
    Yehezkel G, Chayoth R, Abdu U, Khalaila I, Sagi A (2000) High-density lipoprotein associated with secondary vitellogenesis in the hemolymph of the crayfish Cherax quadricarinatus. Comp Biochem Physiol B 127:411–421PubMedCrossRefGoogle Scholar
  25. 25.
    Subramoniam T, Gunamalai V (2003) Breeding biology of the sand crab Emerita asiatica (Decapoda: Anomura). Adv Mar Biol 46:91–182PubMedCrossRefGoogle Scholar
  26. 26.
    Subramoniam T, Tirumalai R, Gunamalai V, Hoffmann KH (1999) Embryonic ecdysteroids in a mole crab Emerita asiatica (Miline Edwards). J Biosci 24:91–96CrossRefGoogle Scholar
  27. 27.
    Warrier S, Tirumalai R, Subramoniam T (2001) Occurrence of vertebrate steroids, estradiol 17β and progesterone in the reproducing females of the mud crab Scylla serrata. Comp Biochem Physiol 130:283–294Google Scholar
  28. 28.
    Kerr MS (1968) Protein synthesis by hemocytes of Callinectes sapidus: a study of in vitro incorporation of 14C leucin. J Cell Biol 39:72a–73aGoogle Scholar
  29. 29.
    Ezhilarasi S, Subramoniam T (1986) Serological studies on the egg maturation in the edible crab, Scylla serrata. J Singap Natl Acad Sci 15:21–25Google Scholar
  30. 30.
    Suzuki S, Yamasaki K, Katakura Y (1990) Vitellogenin synthesis in andrectomized males of the terrestrial isopod, Armadillidium vulgare (Malacostracan Crusacea). Biol Bull 77:120–126Google Scholar
  31. 31.
    Junera H, Croisille Y (1980) Recherche du lieu de synthese de la vitellogenine chez le Crustace Amphipode Orchestia gammarella (Pallas). Mise en evidence d’une activation de is synthese proteique dans le tissue adipeux sous-epidermique en liaison avec la production de vitellogenine. C R Acad Sci Paris 290:703–706Google Scholar
  32. 32.
    Meusy JJ, Junera H, Cledon P, Martin M (1983) La vitellogenine chez un Crustace Decapod Natantia Palaemon serratus Pennant. Mise en evidence comparaison immunologique avec les viellines, site de synthese et role des pedoncules oculaires. Reprod Nutr Dev 23:625–640CrossRefGoogle Scholar
  33. 33.
    Rani K, Subramoniam T (1997) Vitellogenesis in the mud crab Scylla serrata—an in vivo isotope study. J Crustac Biol 17:659–665CrossRefGoogle Scholar
  34. 34.
    Chen YN, Tseng DY, Ho PY, Kuo CM (1999) Site of vitellogenin synthesis determined from a cDNA encoding a vitellogenin fragment in the freshwater giant prawn Macrobrachium rosenbergii. Mol Reprod Dev 54:215–222PubMedCrossRefGoogle Scholar
  35. 35.
    Yang W-J, Ohira T, Tsutsui N, Subramoniam T, Huong DTT, Aida K, Wilder MN (2000) Determination of amino acid sequence and site of expression of four vitellins in the giant freshwater prawn, Macrobrachium rosenbergii. J Exp Zool 287:413–422PubMedCrossRefGoogle Scholar
  36. 36.
    Jayasankar V, Tsutsui N, Jasmani S, Saido-Sakanaka H, Yang W-J, Okuno A, Tran TT, Aida K, Wilder MN (2002) Dynamics of vitellogenin mRNA expression and changes in hemolymph vitellogenin levels during ovarian maturation in the giant freshwater prawn Macrobrachium rosenbergii. J Exp Zool 293:675–682PubMedCrossRefGoogle Scholar
  37. 37.
    Khayat M, Lubzens E, Tietz A, Funkenstein B (1994) Cell-free synthesis of vitellin in the shrimp Penaeus semisulcatus (de Haan). Gen Comp Endocrinol 93:205–213PubMedCrossRefGoogle Scholar
  38. 38.
    Li K, Chen L, Zhou Z, Li E, Zhao X, Guo H (2006) The site of vitellogenin synthesis in Chinese mitten-handed crab Eriocheir sinensis. Comp Biochem Physiol B 143:453–458PubMedCrossRefGoogle Scholar
  39. 39.
    Chan SM, Mak AS, Choi CL, Ma TH, Hui JH, Tiu SH (2005) Vitellogenesis in the red crab Charybdis feriatus. Contributions from small vitellogenin transcripts (CfVg) and farnesoic acid stimulation of CfVg expression. Ann NY Acad Sci 1040:74–79PubMedCrossRefGoogle Scholar
  40. 40.
    Warrier S, Subramoniam T (2003) Instability of crab vitellogenin and its immunological relatedness with mammalian atherogenic lipoproteins. Mol Reprod Dev 64:329–340PubMedCrossRefGoogle Scholar
  41. 41.
    Zmora N, Trant J, Chan SM, Chung JS (2007) Vitellogenin and its messenger RNA during ovarian development in the female blue crab Callinectes sapidus: gene expression, synthesis, transport, and cleavage. Biol Reprod 77:138–146PubMedCrossRefGoogle Scholar
  42. 42.
    Tiu SH, Hui HL, Tsukimura B, Tobe SS, He JG, Chan SM (2009) Cloning and expression study of the lobster (Homarus americanus) vitellogenin: conservation in gene structure among decapods. Gen Comp Endocrinol 160:36–46PubMedCrossRefGoogle Scholar
  43. 43.
    Mak ASC, Choi CL, Tiu SHK, Hui JHG, Tobe SS, Chan S (2005) Vitellogenesis in the red crab Charybdis feriatus: hepatopancreas specific expression and farnesoic acid stimulation of vitellogenin gene expression. Mol Reprod Dev 7:288–300CrossRefGoogle Scholar
  44. 44.
    Babin PJ, Bogerd J, Kooiman FP, Van Marrewijk WJA, Van der Horst DJ (1999) Apolipophorin II/I, apolipoprotein B, vitellogenin, and microsomal triglyceride transfer protein genes are derived from a common ancestor. J Mol Evol 49:150–160PubMedCrossRefGoogle Scholar
  45. 45.
    Sundermeyer K, Hendricks JK, Prasad SV, Wells MA (1996) The precursor protein of the structural apolipoproteins of lipophorin: cDNA and deduced amino acid sequence. Insect Biochem Mol Biol 26:735–738PubMedCrossRefGoogle Scholar
  46. 46.
    Voloch CM, Freire PR, Russo CA (2005) Molecular phylogeny of penaeid shrimps inferred from two mitochondrial markers. Genet Mol Res 4:668–674PubMedGoogle Scholar
  47. 47.
    Kato Y, Tokishita SI, Ohta T, Yamagata H (2004) A vitellogenin chain containing a superoxide dismutase-like domain is the major component of yolk proteins in cladoceran crustacean Daphnia magna. Gene 334:157–165PubMedCrossRefGoogle Scholar
  48. 48.
    Tokishita S, Kato Y, Kobayashi T, Nakamura S, Ohta T, Yamagata H (2006) Organization and repression by juvenile hormone of a vitellogenin gene cluster in the crustacean, Daphnia magna. Biochem Biophys Res Commun 345:362–370PubMedCrossRefGoogle Scholar
  49. 49.
    Matsumoto T, Nakamura AM, Mori K, Kayano T (2003) Molecular characterization of a cDNA encoding putative vitellogenin from the Pacific oyster Crassostrea gigans. Zool Sci 20:37–42PubMedCrossRefGoogle Scholar
  50. 50.
    Hayakawa H, Andoh T, Watanabe T (2006) Precursor structure of egg proteins in the coral Galaxea fascicularis. Biochem Biophys Res Commun 344:173–180PubMedCrossRefGoogle Scholar
  51. 51.
    Avarre J-C, Lubzen E, Babi PJ (2007) Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B. BMC Evol Biol 7:3–13PubMedCrossRefGoogle Scholar
  52. 52.
    Baker ME (1988) Is vitellogenin an ancestor of apolipoprotein B-100 of human lipoprotein lipase? Biochem J 255:1057–1060PubMedGoogle Scholar
  53. 53.
    Jugan P, Soyez D (1985) Demonstration in vitro del’ inhibition de I’inhibition de I’ endocytose ovocytaire par un extrait de glande de sinus chez la crevette Macrobrachium rosenbergii. C R Acad Sci Paris Ser III 300:705–709Google Scholar
  54. 54.
    Laverdure A-M, Soyez D (1988) Vitellogenin receptor from lobster oocyte membrane: solubilization and characterization by a solid phase binding assay. Int J Invertebr Reprod Dev 13:251–266Google Scholar
  55. 55.
    Jugan P, Van Herp F (1989) Introductory study of an oocyte membrane protein that specifically binds vitellogenin in the crayfish, Orconectus limosus. Invertebr Reprod Dev 16:149–154Google Scholar
  56. 56.
    Warrier S, Subramoniam T (2002) Receptor mediated yolk protein uptake in the crab Scylla serrata: crustacean vitellogenin receptor recognizes related mammalian serum lipoproteins. Mol Reprod Dev 61:536–548PubMedCrossRefGoogle Scholar
  57. 57.
    Tiu SH, Benzie J, Chan SM (2008) From hepatopancreas to ovary: molecular characterization of a shrimp vitellogenin receptor involved in the processing of vitellogenin. Biol Reprod 79:66–74PubMedCrossRefGoogle Scholar
  58. 58.
    Mekuchi M, Ohira T, Kawazoe I, Jasmani S, Suitoh K, Kim YK, Jayasankar V, Nagasawa H, Wilder MN (2008) Characterization and expression of the putative ovarian lipoprotein receptor in the kuruma prawn, Marsupenaeus japonicus. Zool Sci 25:428–437PubMedCrossRefGoogle Scholar
  59. 59.
    Schneider WJ (1992) Vitellogenin receptors: oocyte-specific members of the low-density lipoprotein receptor superfamily. Int Rev Cytol 166:103–137CrossRefGoogle Scholar
  60. 60.
    Atella GC, Silva-Neto MAC, Golodne DM, Arifin S, Shahabuddin M (2006) Anopheles gambusia lipophorin characterization and role in lipid transport to developing oocytes. Insect Biochem Mol Biol 36:375–386PubMedCrossRefGoogle Scholar
  61. 61.
    Raikhel AS, Dhadialla TS (1992) Accumulation of yolk proteins in insect oocytes. Ann Rev Entomol 37:217–251CrossRefGoogle Scholar
  62. 62.
    Byrne BM, Gruber M, Ab G (1989) The evolution of yolk proteins. Prog Biophys Mol Biol 53:33–69PubMedCrossRefGoogle Scholar
  63. 63.
    Suzuki S (1987) Vitellins and vitellogenins of the terrestrial isopod Armadillidium vulgare. Biol Bull 173:345–357CrossRefGoogle Scholar
  64. 64.
    Okuno A, Katayama H, Nagasawa H (2000) Partial characterization of vitellin and localization production in the terrestrial isopod, Armadillidium vulgare. Comp Biochem Physiol 126B:397–407Google Scholar
  65. 65.
    Okuno A, Yang W-J, Jayasankar V, Saido-Sakanaka H, Huong DTT, Jasmani S, Atmomarsono M, Subramoniam T, Tsutsui N, Ohira T, Kawazoe I, Aida K, Wilder MN (2002) Deduced primary structure of vitellogenin in the gaint freshwater prawn, Macrobrachium rosenbergii and yolk processing during ovarian maturation. J Exp Zool 292:417–429PubMedCrossRefGoogle Scholar
  66. 66.
    Raviv S, Parnes S, Segall C, Sagi A (2006) Complete sequence of Litopenaeus vannamei (Crustacea: Decapod) vitellogenin cDNA and its expression in endocrinologically induced sub-adult females. Gen Comp Endocrinol 145:39–50PubMedCrossRefGoogle Scholar
  67. 67.
    Kang BJ, Nantri T, Lee JM, Saito H, Han CH, Hatakeyama M, Saigusa M (2008) Vitellogenesis in both sexes of gonochoristic mud shrimp, Upogebia major (Crustacea): analyses of vitellogenin gene expression and vitellogenin processing. Comp Biochem Physiol B 149:589–598PubMedCrossRefGoogle Scholar
  68. 68.
    Komatsu M, Ando S (1992) A novel low-density lipoprotein with large amounts of phospholipid found in the egg yolk of sand crayfish Ibacus ciliatus: its function as vitellogenin-degrading proteinase. Biochem Biophys Res Commun 186:498–502PubMedCrossRefGoogle Scholar
  69. 69.
    Subramoniam T (2007) Embryonic nutrition and yolk utilization in the sand crab Emerita asiatica. J Endocrinol Reprod 11:1–14Google Scholar
  70. 70.
    Subramoniam T (2000) Crustacean ecdysteroids in reproductin and embryogenesis. Comp Biochem Physiol 125C:135–156Google Scholar
  71. 71.
    Gunamalai V, Kirubagaran R, Subramoniam T (2004) Hormonal coordination of molting and female reproduction by ecdysteroids in the mole crab Emerita asiatica (Milne Edwards). Gen Comp Endocrinol 138:128–138PubMedCrossRefGoogle Scholar
  72. 72.
    Walker A, Ando S, Smith GD, Lee RF (2006) The utilization of lipovitellin during blue crab (Callinectes sapidus) embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 143:201–208PubMedCrossRefGoogle Scholar
  73. 73.
    Shimitzu K, Satuito CG, Saikawa W, Fusetani W (1996) Larval storage protein of the barnacle, Balanus amphitrite: biochemical and immunological similarities to vitellin. J Exp Zool 276:87–94CrossRefGoogle Scholar
  74. 74.
    Dreanno C, Matsumura K, Dohmae N, Takio K, Hirota H, Kirby RR, Clare AS (2006) An (alpha) 2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc Natl Acad Sci USA 103:14396–14401PubMedCrossRefGoogle Scholar
  75. 75.
    Subramoniam T (2004) Hormonal controls of female reproduction and molting in decapod crustaceans. J Endocrinol Reprod 44:1–12Google Scholar
  76. 76.
    Soyez D, Van Deijnen JE, Martin M (1987) Isolation and characterization of a vitellogenesis-inhibiting factor from sinus glands of the lobster, Homarus americanus. J Exp Zool 244:479–484CrossRefGoogle Scholar
  77. 77.
    Soyez D, Le Caer JP, Noel PY, Rossier J (1991) Primary structure of two isoforms of the vitellogenesis inhibiting hormone from the lobster Homarus americanus. Neuropeptides 20:25–32PubMedCrossRefGoogle Scholar
  78. 78.
    Subramoniam T (1999) Endocrine regulation of egg production in economically important crustaceans. Curr Sci 76:350–360Google Scholar
  79. 79.
    Edomi P, Azzoni E, Mettulio R, Pandolfelli N, Ferrero EA, Giulianini PB (2002) Gonad-inhibiting hormone of the Norway lobster (Nephrops norvegicus) cDNA cloning, expression, recombinant protein production, and immunolocalization. Gene 284:93–102PubMedCrossRefGoogle Scholar
  80. 80.
    Bomirski A, Kelk-Kawinska E (1976) Stimulation of oogenesis in the sand shrimp, Crangon crangon by a human gonadotropin. Gen Comp Endocrinol 30:239–242PubMedCrossRefGoogle Scholar
  81. 81.
    Quackenbush LS, Keeley LL (1988) Regulation of vitellogenesis in the fiddler crab Uca pugilator. Biol Bull 175:321–331CrossRefGoogle Scholar
  82. 82.
    Browdy CL, Fainzilber M, Tom M, Loya L, Lubzens E (1990) Vitellin synthesis in relation to oogenesis in in-vitro incubated ovaries of Penaeus semisulcatus (Crustacea, Decapoda, Penaeidae). J Exp Zool 255:205–215CrossRefGoogle Scholar
  83. 83.
    Aguilar MB, Quackenbush LS, Hunt DT, Shabanowitz J, Huberman A (1992) Identification, purification and initial characterization of the vitellogenesis-inhibiting hormone from the Mexican crayfish Procambarus bouvieri (Ortmann). Comp Biochem Physiol 102B:491–498Google Scholar
  84. 84.
    Vincent SGP, Keller R, Subramoniam T (2001) Development of vitellogenin-ELISA an in vivo bioassay and identification of two vitellogenesis-inhibiting hormones of the tiger shrimp, Penaeus monodon. Mar Biotech 3:561–571CrossRefGoogle Scholar
  85. 85.
    De Kleijn DPV, Janssen KPC, Waddy SL, Hegeman R, Lai WY, Martens GJM, Van Herp F (1998) Expression of the crustacean hyperglycemic hormones and the gonad-inhibiting hormone during the reproductive cycle of the female American lobster Homarus americanus. J Endocrinol 156:291–298PubMedCrossRefGoogle Scholar
  86. 86.
    Treerattrakool S, Panyim S, Chan SM, Withyachumnarnkul B, Udomkit A (2008) Molecular characterization of gonad-inhibiting hormone of Penaeus monodon and elucidation of its inhibitory role in vitellogenin expression by RNA interference. FEBS J 275:970–980PubMedCrossRefGoogle Scholar
  87. 87.
    Tsutsui N, Ohira T, Kawazoe I, Takahashi A, Wilder MN (2007) Purification of sinus gland peptides having vitellogenesis-inhibiting activity from the whiteleg shrimp Litopenaeus vannamei. Mar Biotech 9:360–369CrossRefGoogle Scholar
  88. 88.
    Marco HG, Avarre JC, Lubzens E, Gade G (2002) In search of a vitellogenesis-inhibiting hormone from the eyestalk of South African spiny lobster, Jasus lalandi. Invert Reprod Dev 41:15–143Google Scholar
  89. 89.
    Ohira T, Okumura T, Suzuki M, Yajima Y, Tsutsui N, Wilder NM, Nagasawa H (2006) Production and characterization of recombinant vitellogenesis inhibiting hormone from the American lobster, Homarus americanus. Peptides 27:1251–1258PubMedCrossRefGoogle Scholar
  90. 90.
    Okumura T, Yamano K, Sakiyama K (2007) Vitellogenesis gene expression and hemolymph vitellogenin during vitellogenesis, final maturation and oviposition in female kuruma prawn, Marsupenaeus japonicus. Comp Biochem Physiol A 147:1028–1037CrossRefGoogle Scholar
  91. 91.
    Okumura T (2007) Effects of bilateral and unilateral eyestalk ablation on vitellogenin synthesis in immature female kuruma prawn Marsupenaeus japonicus. Zool Sci 24:233–240PubMedCrossRefGoogle Scholar
  92. 92.
    Jayasankar V, Jasmani S, Tsutsui N, Aida K, Wilder MN (2006) Dynamics of vitellogenin synthesis in juvenile giant freshwater prawn Macrobrachium rosenbergii. J Exp Zool A Comp Exp Biol 305:440–448PubMedGoogle Scholar
  93. 93.
    Greve P, Sorokine O, Berges T, Lacombe C, Van Dorsselaer A, Martin G (1999) Isolation and amino acid sequence of a peptide with vitellogenesis inhibiting activity from the terrestrial isopod Armadillium vulgare (Crustacea). Gen Comp Endocrinol 115:406–414PubMedCrossRefGoogle Scholar
  94. 94.
    Bowman CJ, Kroll KJ, Gross TG, Denslow ND (2002) Estradiol-17β induced gene expression in largemouth bass (Micropterus salmoides). Mol Cell Endocrinol 196:67–77Google Scholar
  95. 95.
    Gohar M, Souty C (1983) Mise en e’vidence in vitro d’une synthe et d’une libe’ration de vitelloge’nine dans le tissue adipeux male de Porcellio dilatatus, (Brandt). C R Acad Sci Paris 297:145–148Google Scholar
  96. 96.
    Tsutsui N, Saido-Sakanaka H, Yang W-J, Jayasankar V, Jasmani S, Okuno A, Ohira T, Okumura T, Aida K, Wilder MN (2004) Molecular characterization of a cDNA encoding vitellogenin in the coonstriped shrimp, Pandalus hypsinotus and site of vitellogenin mRNA expression. J Exp Zool A Comp Exp Biol 301:802–814PubMedCrossRefGoogle Scholar
  97. 97.
    Abdu U, Davis C, Khalaila SagiA (2002) The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexual plastic system. Gen Comp Endocrinol 127:263–272PubMedCrossRefGoogle Scholar
  98. 98.
    Sagi A, Manor R, Segall C, Davis C, Halaila I (2002) On intersexuality in the crayfish Cherax quadricarinatus: an inducible sexual plasticity model. Invertebr Reprod Dev 41:27–33Google Scholar
  99. 99.
    Laufer H, Landau M, Homola E, Borst EW (1987) Methyl farnesoate: its site of synthesis and regulation of secretion in a juvenile crustacean. Insect Biochem 17:1129–1131CrossRefGoogle Scholar
  100. 100.
    Liu L, Laufer H (1996) Isolation and characterization of sinus gland neuropeptides with both mandibular organ inhibiting and hyperglycemic effects from the spider crab Libinia emarginata. Arch Insect Biochem Physiol 32:375–385CrossRefGoogle Scholar
  101. 101.
    Wainwrite G, Webster SG, Wilkinson MC, Chung JS, Rees HH (1996) Structure and significance of mandibular organ-inhibiting hormone in the crab, Cancer pagurus. J Biol Chem 271:12749–12754CrossRefGoogle Scholar
  102. 102.
    Wainwrite G, Prescott MC, Rees HH, Webster SG (1996) Mass spectrometric determination of methyl farnesoate profiles and correlation with ovarian development in the edible crab Cancer pagurus. J Mass Spectrum 31:1338–1344CrossRefGoogle Scholar
  103. 103.
    Wainwrite G, Websters SG, Rees HH (1998) Neuropeptide regulation of biosynthesis of the juvenoid, methyl farnesoate in the edible crab, Cancer pagurus. Biochem J 334:651–657Google Scholar
  104. 104.
    Otsu T (1963) Bihormonal control of sexual cycle in freshwater crab, Potamon dehaani. Embryologia 8:1–20CrossRefGoogle Scholar
  105. 105.
    Hinsch GW, Bennett DC (1979) Vitellogenesis stimulated by thoracic ganglion implants into destalked immature spider crabs, Libinia emarginata. Tissue Cell 11:345–351PubMedCrossRefGoogle Scholar
  106. 106.
    Takayanagi H, Yamamoto Y, Takeda N (1986) An ovary stimulating factor in the shrimp Paratya compressa. J Exp Zool 240:203–209CrossRefGoogle Scholar
  107. 107.
    Yano I (1988) Hormonal control of vitellogenesis in penaeid shrimp. In: Flegel TW (ed) Advances in shrimp biotechnology. National Centre for Genetic Engineering and Biotechnology, Bangkok, pp 29–31Google Scholar
  108. 108.
    Richardson HG, Deecaraman M, Fingerman M (1991) The effects of biogenic amine on ovarian development in the fiddler crab Uca pugilator. Comp Biochem Physiol 99C:53–247Google Scholar
  109. 109.
    Sarojini R, Nagabushanam R, Fingerman M (1996) In vitro inhibition by DA of 5-hydroxytryptamine stimulated ovarian maturation in the red swamp crayfish Procambarus clarkii. Experientia 52:707–709CrossRefGoogle Scholar
  110. 110.
    Sarojini R, Nagabushanam R, Fingerman M (1997) An in vitro study of the inhibitory action of methionine enkephalin on ovarian maturation in the red swamp crayfish Procambarus clarkii. Comp Biochem Physiol 117C:207–210Google Scholar
  111. 111.
    Subramoniam T, Kirubagaran K (2010) Endocrine regulation of vitellogenesis in lobsters. J Mar Biol Assoc India (in press)Google Scholar
  112. 112.
    Chen YN, Fan HF, Hsieh SL, Kuo CM (2003) Physiological involvement of DA in ovarian development of the freshwater giant prawn, Macrobrachium rosenbergii. Aquaculture 228:383–395CrossRefGoogle Scholar
  113. 113.
    De Kleijn DPV, Janssen KPC, Van Den Berg MC, Martens GJM, Van Herp F (1995) Cloning and expression of two mRNAs encoding structurally different crustacean hyperglycemic hormone precursors in the lobster Homarus americanus. Biochim Biophys Acta 1260:62–66PubMedGoogle Scholar
  114. 114.
    Gu PL, Tobe SS, Chow BKC, Chu KH, He J-G, Chan S-M (2002) Characterization of an additional molt inhibiting hormone-like neuropeptide from the shrimp Metapenaeus ensis. Peptides 23:1875–1883PubMedCrossRefGoogle Scholar
  115. 115.
    Tiu SH, Chan SM (2007) The use of recombinant protein and RNA interference approaches to study the reproductive functions of a gonad-stimulating hormone from the shrimp Metapenaeus ensis. FEBS J 274:4385–4395PubMedCrossRefGoogle Scholar
  116. 116.
    Zmora N, Trant J, Zohar Y, Chung JS (2009) Molt-inhibiting hormone stimulates advanced ovarian developmental stages in the female blue crab, Callinectes sapidus I: an ovarian stage dependent involvement. Saline Syst 5:7PubMedCrossRefGoogle Scholar
  117. 117.
    Zmora N, Sagi A, Zohar Y, Chung JS (2009) Molt-inhibiting hormone stimulates advanced ovarian developmental stages in the female blue crab, Callinectes sapidus 2: novel specific binding sites in hepatopancreas and cAMP as a second messenger. Saline Syst 5:6PubMedCrossRefGoogle Scholar
  118. 118.
    Chung JS, Webster SG (2006) Binding sites of crustacean hyperglycemic hormone and its second messengers on gills and hindgut of the green shore crab Carcinus maenus. A possible osmoregulatory role. Gen Comp Endocrinal 147:206–213CrossRefGoogle Scholar
  119. 119.
    Ngernsoungnern A, Ngernsoungnern P, Kavanaugh S, Sower SA, Sobhon P, Sretarugsa P (2008) The identification and distribution of gonadotropin releasing hormone-like peptides in the central nervous system and ovary of the giant freshwater prawn, Macrobrachium rosenbergii. Invertebr Neurosci 8:49–57CrossRefGoogle Scholar
  120. 120.
    Millar RP (2005) GnRHs and GnRH receptors. Anim Reprod Sci 88:5–28PubMedCrossRefGoogle Scholar
  121. 121.
    Ngernsoungnern P, Ngernsoungnern A, Kavanaugh S, Sobhon P, Sower SA, Sretarugsa P (2008) The presence and distribution of gonadotropin releasing hormone-like factor in the central nervous system of the black tiger shrimp, Penaeus monodon. Gen Comp Endocrinol 155:613–622PubMedCrossRefGoogle Scholar
  122. 122.
    Fann MC, Man WC, Wang PS (1990) Existence of a gonadotropin-releasing hormone like factor in brass shrimp (black tiger prawn, Penaeus monodon). Chin J Physiol 33:169–178PubMedGoogle Scholar
  123. 123.
    Di Fiore MM, Rastogi RK, Ceciliani F, Messi E, Botte V, Botte L, Pinelli C, D’Aniello B, D’Aniello A (2000) Mammalian and chicken forms of gonadotropin-releasing hormone in the gonads of a protochordate, Ciona intestinalis. Proc Natl Acad Sci USA 97:2343–2348Google Scholar
  124. 124.
    Gorbman A, Sower SA (2003) Evolution of the role of GnRH in animal (Metazoan) biology. Gen Comp Endocrinol 134:207–213PubMedCrossRefGoogle Scholar
  125. 125.
    Hinsch GW (1980) Effect of mandibular organ implants upon the spider crab. Trans Am Microsc Soc 99:317–322CrossRefGoogle Scholar
  126. 126.
    Laufer H, Landau M, Borst D, Homola E (1986) The synthesis and regulation of methyl farnesoate, a novel juvenile hormone for crustacean reproduction. In: Porchet M, Andries JC, Dhainaut A (eds) Advances in invertebrate reproduction, vol 4. Elsevier, Amsterdam, pp 135–143Google Scholar
  127. 127.
    Rodriguez EM, Lopez Greco LS, Medesain DA, Laufer H, Fingerman M (2002) Effects of methyl farnesoate alone and in combination with other hormones on ovarian growth of the red swamp crayfish, Procambarus clarkii during vitellogenesis. Gen Comp Endocrinol 125:34–40PubMedCrossRefGoogle Scholar
  128. 128.
    Soroka Y, Sagi A, Khalaila I, Abdu U, Milner Y (2000) Changes in protein kinase C during vitellogenesis in the crayfish Cherax quadricarinatus—possible activation by methyl farnesoate. Gen Comp Endocrinol 118:200–208PubMedCrossRefGoogle Scholar
  129. 129.
    Tiu SH, Chan S, Tobe SS (2010) The effects of farnesoic acid and 20-hydroxyecdysone on vitellogenin gene expression in the lobster, Homarus americanus, and possible roles in the reproductive process. Gen Comp Endocrinol 166:337–345PubMedCrossRefGoogle Scholar
  130. 130.
    Chang ES (1997) Chemistry of crustacean hormones that regulate growth and reproduction. In: Fingerman M, Nagabushanam R, Thompson MF (eds) Endocrinology and reproduction. Recent advances in marine biotechnology, vol 1. Science Publishers Inc., New Hampshire, pp 163–178Google Scholar
  131. 131.
    Tamone SL, Chang ES (1993) Methyl farnesoate stimulates ecdysteroid secretion from crab Y-organs in in vitro. Gen Comp Endocrinol 89:425–432PubMedCrossRefGoogle Scholar
  132. 132.
    Abdu U, Takac P, Laufer H, Sagi A (1998) Effect of methyl farnesoate on late larval development and metamorphosis in the prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae): a juvenoid effect? Biol Bull 195:112–119CrossRefGoogle Scholar
  133. 133.
    Borst DW, Laufer H (1990) Methyl farnesoate, a JH-like compound in crustaceans. In: Gupta AP (ed) Recent advances in comparative arthropod morphology, physiology, and development. Rudgers University Press, New Brunswick, pp 35–60Google Scholar
  134. 134.
    Marsden G, Hewitt D, Boglio E, Mather P, Richardson N (2008) Methyl farnesoate inhibition of late stage ovarian development and fecundity reduction in the black tiger prawn, Penaeus monodon. Aquaculture 280:242–246CrossRefGoogle Scholar
  135. 135.
    Homola E, Sagi A, Laufer H (1991) Relationship of claw form and exoskeleton condition to reproductive system size and methyl farnesoate in the male spider crab, Libinia emarginata. Invertebr Reprod Dev 20:219–225Google Scholar
  136. 136.
    Sagi A, Ahl J, Danaee H, Laufer H (1994) Methyl farnesoate levels in male spider crabs exhibiting active reproductive behaviour. Horm Behav 28:262–272CrossRefGoogle Scholar
  137. 137.
    Nagaraju GPC, Reddy PR, Reddy PS (2004) Mandibular organ: its relation to body weight, sex, molt and reproduction in the crab, Oziotelphusa senex senex Fabricius 1791. Aquaculture 232:603–612CrossRefGoogle Scholar
  138. 138.
    Payen GG, Costlow JD (1977) Effects of a juvenile hormone mimic on male and female gametogenesis of the mud-crab Rhithropanopeus harrisii (Gould) (Brachyura: Xanthidae). Biol Bull 152:199–208PubMedCrossRefGoogle Scholar
  139. 139.
    Sasikala SL, Subramoniam T (1991) Influence of juvenile hormone III (JHIII) on ovarian activity of adult paddy field crab Paratelphusa hydrodromous (Herbst). Indian J Exp Biol 29:426–429Google Scholar
  140. 140.
    Sappington TW, Oishi K, Raikhel AS (2002) Structural characteristics of insect vitellogenin. In: Raikhel AS, Sappington TW (eds) Reproductive biology of invertebrates, vol XII (part A). Science Publishers Inc., Enfield, pp 69–101Google Scholar
  141. 141.
    Arvy L, Echalier G, Gabe M (1954) Modifications de la gonade de Carcinus maenas L. apres ablation bilaterale de l’organ Y. C R Acad Sci Paris Ser D 239:1853–1855Google Scholar
  142. 142.
    Steel CGH, Vafopoulou X (1998) Ecdysteroid titers in hemolymph and other tissues during molting and reproduction in the terrestrial isopod, Oniscus ascellus (L.). Invertebr Reprod Dev 34:187–194Google Scholar
  143. 143.
    Charniaux-Cotton H, Touir A (1973) Controlle de previtellogenese et de la vitellogenese chez la crevette hermaphrodite Lysmata seticaudata Risso. CR Acad Sci Paris D 276:2717–2720Google Scholar
  144. 144.
    Okumura T, Han CH, Suzuki Y, Aida K, Hanyu I (1992) Changes in hemolymph vitellogenin and ecdysteroid levels during the reproductive and non-reproductive molt cycles in the freshwater prawn Macrobrachium nipponense. Zool Sci 9:37–45Google Scholar
  145. 145.
    Demeusy N (1962) Role de la gland de mue dans l’evolution ovarianne due crabe Carcinus maenas Linn. Can Biol Mar 3:37–56Google Scholar
  146. 146.
    Chaix JC, De Reggi M (1982) Ecdysteroid levels during ovarian development and embryogenesis in the spider crab Acanthonyx lunulatus. Gen Comp Endocrinol 47:7–14PubMedCrossRefGoogle Scholar
  147. 147.
    Young NJ, Webster SG, Rees HH (1993) Ovarian and hemolymph ecdysteroid titers during vitellogenesis in Macrobrachium rosenbergii. Gen Comp Endocrinol 90:183–191PubMedCrossRefGoogle Scholar
  148. 148.
    Young NJ, Webster SG, Rees HH (1993) Ecdysteroid profiles and vitellogenesis in Penaeus monodon (Crustacea: Decapoda). Int J Invertebr Reprod 24:107–118Google Scholar
  149. 149.
    Chung ACK, Durica DS, Clifton SW, Roe BA, Hopkins PM (1998) Cloning of crustacean ecdysteroid receptor and retinoid X receptor gene homologs and elevation of retinoid-X receptor mRNA by retinoic acid. Mol Cell Endocrinol 139:209–227PubMedCrossRefGoogle Scholar
  150. 150.
    Durica DS, Wu X, Anilkumar G, Hopkins PM, Chung ACK (2002) Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Mol Cell Endocrinol 189:56–79CrossRefGoogle Scholar
  151. 151.
    Kokoza VA, Martin D, Mienaltowski MJ, Ahmaed A, Morton CM, Raikhel AS (2001) Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Gene 274:47–65PubMedCrossRefGoogle Scholar
  152. 152.
    Maki A, Sawatsubashi S, Ito S, Shirode Y, Suzuki E, Zhao Y, Yamagata K, Kouzmenko A, Takeyama T, Kato S (2004) Juvenile hormones antagonize ecdysone actions through co-repressor recruitment to EcR/USP heterodimers. Biochem Biophys Res Commun 320:262–267PubMedCrossRefGoogle Scholar
  153. 153.
    Fairs NJ, Evershed RP, Quinlan PT, Goad LJ (1990) Changes in ovarian unconjugated and conjugated steroid titers during vitellogenesis in Penaeus monodon. Aquaculture 89:83–99CrossRefGoogle Scholar
  154. 154.
    Quinitio ET, Yamauchi K, Hara A, Fuji A (1991) Profiles of progesterone- and estradiol-like substances in the hemolymph of female Penaeus monodon during an annual reproductive cycle. Gen Comp Endocrinol 81:343–348PubMedCrossRefGoogle Scholar
  155. 155.
    Kirubakaran R, Peter SM, Dharani G, Vinithkumar NV, Sreeraj G, Ravindran R (2005) Changes in vertebrate type steroids and 5-hydroxytryptamine during ovarian recrudescence in the Indian spiny lobster Panulirus homarus. NZ J Mar Freshw Res 39:527–537Google Scholar
  156. 156.
    Gunamalai V, Kirubagaran R, Subramoniam T (2006) Vertebrate steroids and the control of female reproduction in two decapod crustaceans, Emerita asiatica and Macrobrachium rosenbergii. Curr Sci 90:119–123Google Scholar
  157. 157.
    Yano I (1985) Induced ovarian maturation and spawning in greasyback shrimp, Metapenaeus ensis, by progesterone. Aquaculture 47:223–229CrossRefGoogle Scholar
  158. 158.
    Yano I (1987) Effects of 17-hydroxy-progesterone on vitellogenin secretion in kuruma prawn, Penaeus japonicus. Aquaculture 61:49–57CrossRefGoogle Scholar
  159. 159.
    Yano I, Hoshino R (2006) Effects of 17β-estradiol on the vitellogenin synthesis and oocyte development in the ovary of kuruma prawn (Marsupenaeus japonicus). Comp Biochem Physiol Part A 144:18–23Google Scholar
  160. 160.
    Coccia E, De Lisa E, Di Cristo C, Di Cosmo A, Paolucci M (2010) Effects of estradiol and progesterone on the reproduction of the freshwater crayfish Cherax albidus. Biol Bull 218:36–47PubMedGoogle Scholar
  161. 161.
    Charniaux-Cotton H, Payen G (1988) Crustacean reproduction. In: Laufer H, Dower RGH (eds) Endocrinology of selected invertebrate types. Alan R. Liss, New York, pp 279–303Google Scholar
  162. 162.
    Fliss AE, Benzeno S, Rao J, Caplan AJ (2000) Control of estrogen receptor ligand binding by hsp90. J Steroid Biochem Mol Biol 72:223–230PubMedCrossRefGoogle Scholar
  163. 163.
    Wu LT, Chu KH (2008) Characterisation of heat shock protein 90 in the shrimp Metapenaeus ensis: evidence for its role in the regulation of vitellogenin synthesis. Mol Reprod Dev 75:952–959PubMedCrossRefGoogle Scholar
  164. 164.
    Paolucci M, Di Cristo C, Di Cosmo A (2002) Immunological evidence for progesterone and estradiol receptors in the freshwater crayfish Austropotamobius pallipes. Mol Reprod Dev 63:55–62PubMedCrossRefGoogle Scholar
  165. 165.
    Couch EF, Hagino N, Lee JW (1987) Changes in estradiol and progesterone immunoreactivity in tissues of the lobster Homarus americanus with developing and immature ovaries. Comp Biochem Physiol A87:765–770CrossRefGoogle Scholar
  166. 166.
    Preechaphol R, Klinbunga S, Ponza P, Menesveta P (2010) Isolation and characterization of progesterone receptor-related protein p23 (Pm-p23) differentially expressed during ovarian development of the giant tiger shrimp Peneus monodon. Aquaculture 308:S75–S82CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2010

Authors and Affiliations

  1. 1.Marine Biotechnology DivisionNational Institute of Ocean TechnologyChennaiIndia

Personalised recommendations